

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING CENTRAL CAMPUS PULCHOWK

CASE STUDY REPORT ON IOE INTRANET DESIGN

By: PRANESH SHAKYA / 068BCT528 RAJESH BHUJU / 068BCT531 RUPESH KARN / 068BCT534 SUVRAT RAM JOSHI / 068BCT546

Submitted To: Mr. Baburam Dawadi DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING LALITPUR, NEPAL

(September 9, 2015)

IOE PULCHOWK CAMPUS INTRANET DESIGN

Question:

Pulchowk Campus has six Departments (COMP&elx,elect,civil,mech, arch, S&H), CIT, CES, administrative building (library), boys hostel, Ladies hostel, msc hostel. Boys hostel blocks(A,B,C) having in total 45X3=105 rooms, ladies hostel block having in total 30 rooms, 24 faculty quarters. Msc hostel having 36 rooms. DOECE has 4 computer labs (at cit and library) each having 24 computers, 20 faculty/administrative rooms. Other departments have in an average 2-computer labs each of 24 computers and 12 faculty/administrative rooms, CES has 20 rooms. CIT server room has web, proxy, primary DNS, cache dns, Mail, AAA servers of www.pcampus.edu.np, 2 network printers, 2 CISCO voip phones. campus administrative building located at library has 20 administrative cabin and 6 library computers. Internet is supplied to all rooms /quarters computer with a wired CAT6 port and every department has two wireless points, boys hostel has 3 AP for each block, ladies hostel has 1 AP and quarter is covered by 2APs, CIT/Library has 2 APs. CIT has purchased the public ip block 103.5.150.0/24 from APNIC and 20Mbps internet from NTC. All servers, routers and switches at server control room have public IPs. Similarly DOECE administrative rooms are connected with public IPs, a network lab of DOECE is also connected with public IPs. List the complete physical equipments/virtual equipments required for the complete networking design/intranet design. Prepare the Summary specification sheet of all the equipments. Draw/design the network/intranet showing all the connection in switch/AP level. (use visio or PT). Design the logical ip address distribution. You shall have your own choice of private and public IPv4/v6 addressing. design appropriate VLAN, Security/Firewall etc...at your work.

PHYSICAL EQUIPMENTS

- 1. Router
- 2. Access-Point
- 3. Switch
- 4. CAT-6 UTP Cable
- 5. PC/Workstations
- 6. Server
- 7. Mail Server
- 8. Proxy Server
- 9. Web Server
- 10. Primary DNS Server
- 11. Cache DNS Server

- 12. Fiber Optics Gigabit Ethernet Switch
- 13. DMG Router

SPECIFICATION SHEET

SN	Item-	Quantity	Unit	Summary Specification
	Description			
1	CAT-6 UTP Cable	380	Meter	4-pair pure copper conductor PVC jacketed Foiled/UTP cable with TIA standard color coded 23 AWG and having tested frequency range of 250- 550 MHz, Support upto1000Base-T at 100 Meter
2	PCs	260	unit	Dell 745 (or higher; dual Core-series processor); 2GB of RAM; Windows XP or Windows 7
3	Router	1	unit	Cisco [®] 2900 Series Integrated Services Routers
4	Access Point	26	unit	150Mbps Wireless N Router; 2.4- 2.4835GHz
5	Mail Server	1	unit	Intel Quad-core processor; 8GB RAM; 100Mbps NIC
6	Server	1	unit	Xeon E3-1220L V2; Dual Core; 4 threads; 2.3 GHz processor
7	DNS Server	1	unit	30MB RAM for PDNS + an extra 30MB for MySQL

8	Proxy Server	1	unit	Linux such as Red Hat or Ubuntu. Ubuntu; 300MHz processor, 128MB of memory and 1GB of hard drive space
9	Fiber Optics Switch	1	unit	7 UTP ports; 10/100 auto-sensing and auto-negotiating; 1 fiber port 100BaseFX; ST or SC connectors; multimode/singlemode; Distances to 70 km
10	Switch	21	unit	Cisco Catalyst 2950SX-24: 8.8 Gbps maximum forwarding bandwidth
11	DMG Router	1	unit	2.4/5.0 GHz; 802.11n; WPS button; DLNA; Ethernet

LOGICAL IP ADDRESS

We are provided with a public IP address from APNIC 103.5.150.0/24. Since there are two switches for different LAN requirement we initially have to create 2 subnets. Also as question stated the administration and network lab of DoECE also has public IPs so altogether we need 4 subnets.

1 st subnet (A) – 9 machines (Servers)
2 nd subnet (B) – 20 machines (PCs)
3 rd subnet (C) – 24 machines (PCs)
4 th subnet (D) – 26 machines (Access Points)

Applying VLSM technique,

Starting from the highest machines which is C,

26 machines = $(2^5 - 2)$ hosts = 30 hosts

3 bits from host is added to network bits,

 2^3 subnets = 8 subnets

Network bits = 27 bits

Multiplier = $2^5 = 32$

Subnet Mask = 255.255.255.11100000

The subnets created are :-

Subnet 1 = 103.5.150.0/27 [0 - 31] Subnet 2 = 103.5.150.32/27 [32 - 63] Subnet 3 = 103.5.150.64/27 [64 - 95] Subnet 4 = 103.5.150.96/27 [96 - 127] Subnet 5 = 103.5.150.128/27 [128 - 159] Subnet 6 = 103.5.150.160/27 [160 - 191] Subnet 7 = 103.5.150.192/27 [192 - 233]

Subnet 8 = 103.5.150.234/27 [234 - 255]

Subnet 1 is assigned to D i.e. Access Points in Boys Hostel, Girls Hostel, Quarter, Departments and CIT/Library.

Similarly,

Taking C with 24 machines

24 machines = $(2^5 - 2)$ hosts = 30 hosts

Since this is similar to D, hence we assign Subnet 2 to C i.e. DOECE Network Lab.

Again,

Taking B with 20 machines

20 machines = $(2^5 - 2)$ hosts = 30 hosts

Since this is similar to B, hence we assign <u>Subnet 3 to B i.e. DoECE Administrative Unit</u>.

Lastly, Taking Block A with 9 machines

9 machines = (2 4 - 2) hosts = 14 hosts

(5-4) bits from host is added to network bits,

2 1 subnets = 2 subnets

Network bits = (27 + 1) bits = 28 bits

Multiplier = 24 = 16

Subnet Mask = 255.255.255.11110000

Take Subnet 4 = 103.5.150.96/27 [96 – 127]

The subnets created are :-

Subnet 4.0 = 103.5.150.96/28 [96 - 111]

Subnet 4.1 = 103.5.150.104/28 [112 - 127]

Subnet 4.0 is assigned to A i.e. CIT Server Room

INTRANET DESIGN

Physical Network Design

Logical Network Design (IP Addressing)

