
Section - 1

COMPUTER FUNDAMENTALS & HISTORICAL

DEVELOPMENT OF C

Computer accepts raw data and then stores, retrieves, sends, receives, analyzes and synthesizes

the data to produce information. Computers are used in wide areas in our daily lives to

accomplish tasks quickly and efficiently. Computer has program to complete the tasks called

computer program or software. A program is a set of sequenced instructions which causes a

computer to perform particular operations.

1.1 HISTORICAL DEVELOPMENT OF COMPUTERS

By the date, the historical development of computing technology is summarized below:

Year Device/Description

3000BC ABACUS by Chinese

1614 Napier bones and logarithms by John Napier

1620 Slide Rule by Edmund Gunter

1632 Improved Slide Rule by William Oughtred

1642 Pascaline by Blaise Pascal

1671 Leibnitz calculator by Gottfried Wilhelm von Leibnitz

1801 Punch Card loom by Joseph Marie Jacquard

1822 Difference Engine by Charles Babbage

1834 Analytical engine by Charles Babbage

1854 Boolean Algebra by George Bool

1890 Punch Card Machine by Herman Hollerith

1906 Electronic Valve invented by De Forest

1930 Differential Analyzer by Vannevar Bush

1937 Binary adder built by George Stibitz, First Digital Electronic Computer Designed

by John V. Atanasoff

1941 First Geneal purpose computer designed by Konard Zuse

1944 First Automatic Computer, MARK I designed by Haward Aiken

A compuer is a programmable electronic device that accepts data and instruction

from input devices, process the data and provides result as information in the output.

The electronic device is known as hardware and the set of instructions is known as software.

2/ Capsules of C Programming

1945 ENIAC (Electronic Numerical Integrator and Computer) by John W. Mauchly &

J. Presper Eckert, Computer System Elements outlined by Jon V. Neumann

1946 UNIVAC designed principally by J. Presper Eckert & John Mauchly

1947 Transistor Invented by John Bardeen, William Shockley & Walter Brattain

1948 MARK III by Howard Aiken. Also known as ADEC (Aiken Dahlgren Electronic

Calculator)

1951 First Business computer UNIVAC(UNIversal Automati Computer) became

operational

1952 ERA 1101 became UNIVAC 1101

1953 Introduced 604 Computer by Tom Watson in IBM(International Business

Machine).

1956 Second Generation Computer (using transistors) introduced by Bell Laboratory

1959 Integrated Circuits(ICs) demonstrated by Clair Kilby

1964 First third generation computer using ICs developed. IBM produced first Americal

Airline teservation tracking system.

1965 First commercial mini computer, PDP-8 by digital equipment corporation

1969 ARPANET (Advane Research Project Agency NETwork) funded by US DOD

(Department of Defense)

1971 Intel 4004 Microprocessor designed by Ted Hoff, IBM introduced first 8-inch

“memory disk”, later it is called floppy disk.1974

1972 Intel made the 8-bit 8008 and 8080 microprocessor.

1974 First fourth generation computer built by Ed Roberts.

1975 First Personal Computer Software created by Bill Gates and Paul Allen

1976 Apple personal computer by Steve Jobs and Wozniak, 5.25-Inch Floopy

developed by Shugart

1981 IBM PC introduced in the market

1982 Cray Super Computer by Cray Research Company

1984 Macintosh PC by Apple

1989 Optical Computer demonstrated

1990 Motorola announced 32-bit microprocessor

1991 WWW technology develoed by Tim Berners-Lee at CERN(European

Organization for Nuclear Research)

1992 IBM think pad, laptop by IBM

1995 Pentium pro microprocessor by Intel

1996 200Mhz Pentium processor introduced by Intel

1997 Intel Pentium-II microprocessor

Computer Fundamentals & Historical Development of C / 3

1999 Intel Pentium-III microprocessor

2000 Pentium-4 released

2006 Intel Core-2 Duo processor released.

2010 Intel Core-i3 & beyond

1.2 COMPUTER GENERATIONS

Each generation of computer is characterized by a major technological development that

fundamentally changed the way computers operate, it results increasingly smaller, cheaper,

more powerful, more efficient and reliable devices.

1.2.1 First Generation - 1940-1956: Vacuum Tubes

Characteristics:

a. Vacuum tubes were used for circuitry system & magnetic drum for memory

b. Bigger in size, consumes large space, generally a whole room

c. Much expensive to operate, consumes much electrical power,

d. Generate too much heat, require excessive cooling

e. Machine language programming.

f. Solve single problem at a time.

g. Examples are: UNIVAC, EDVAC(Elecronic Discrete Variable Automatic Compuer),

ENIAC

1.2.2 Second Generation - 1957-1963: Transistors

Characteristics:

a. Vacuum tubes in the circuitry system was replaced by transistors.

b. Tramsistors were faster and more reliable than vacuum tubes.

c. It was a punch card technology

d. Used assembly language in programming, better in understanding than machine

language.

e. Consume less power, generate less heat and more compact in size as compared with

first generation computers. However, it required excessive cooling.

f. Examples are : IBM 1620, PDP-I, PDP-5. (PDP: Programmed Data Processor)

1.2.3 Third Generation - 1964-1971: Integrated Circuits

Characteristics:

a. Numbers of transistors, diodes & registers were integrated into a single silicon chip called

Integrated Circuit (IC). It was more efficient and smaller in size of the computer as

compared with previous generations.

4/ Capsules of C Programming

b. It required less energy, consumes less space in the room.

c. Could plug different keyboard, monitors and other IO devices.

d. Interfaced with operating system which allowed the device to run many different

applications at one time with a central program that monitored the memory

e. Used high level languages in programming to develop application.

f. Exampes are IBM 370, PDP-11 & CDC 7600

1.2.4 Fourth Generation - 1972-Present: Microprocessors

Characteristics:

a. Thousands of silicon chip were built into a single chip called Large Scale Integration

(LSI) and Very Large Scale Integration (VLSI).

b. Magnetic core memories were replaced by semiconductor memories

c. Very high level programming language like query based language, C, C++ Java were

used in programming.

d. The programs developed were easily portable and expandable.

e. Operating System with smooth Graphical User Interface system was developed.

f. Efficiency of the system was drastically improved and the overall size is drastically reduced.

g. It consumes less it.

h. Had larger primary and secondary storage memory.

1.2.5 Fifth Generation - Present and Beyond: Artificial Intelligence

Characteristics:

a. Based on artificial intelligence, are still in development

b. Offers Ultra Large Scale Integration (ULSI) technology

c. PCs are potable, smaller and handy.

d. Desktop PCs are more powerful, reliable and have fewer possibilities of failure handling.

e. Embeded artificial intelligence like voice recognition system, parallel processing, super

computing, robotics, game playing, expert systems.

f. Achieve natural language processing with quantum computation and molecular

technology will radically change

1.3 COMPUTER SYSTEM AND ORGANIZATION

Computer System is divided into two fields- hardware and software. The mechanical or the

physical parts of computer like CPU, Monitor, and Keyboard etc are computer hardware.

Software is a program which makes the computer work and function.

Computer hardware refers to the physical parts of the computer system and software is the

set of instructions or programs that are necessary for the functioning of computer to perform

certain tasks.

Computer Fundamentals & Historical Development of C / 5

1.3.1 Computer Hardware

The computer hardware system principally consists of components depicted below in the block

diagram with brief descriptions.

Figure 1.3: Interaction among hardware components

a. Input Units: They are the input devices from which computer accepts data on which

the operations are to be performed.

b. Processing Unit: It is also called the Central Processing Unit, used to perform

computations and information processing on those data that is entered through input

devices. Processing unit consists of Control Unit (CU) and the Arithmetic Logic Unit (ALU).

c. Output Unit: They are set of output devices used for providing the output of a program

that is obtained after performing the operations specified in a program. Output devices

display or print the output results of the operations on the input data.

d. Memory Unit: Memory in a computer is storage area needed to store instructions and

data, either temporarily or permanently. There are two types of memory in computer

system: Primary memory and Secondary memory. Primary memory stores data and

programs while the program is being executed. The secondary memory stores data and

programs for long periods of time. It provides large, non-volatile and cheap storage for

programs and data.

Control unit stores the instruction sets through which it directs the entire computer

system to carry out or execute stored program. Arithmatic Logic Unit (ALU)

performs arithmetical and logical operations on the data received through the control

unit instructions.

CPU

Input Unit

Conrol Unit

Arithmetic

Logit Unit

Memory Unit Output Unit

Seconary Storage

Magnetic Tape Magnetic Disk

6/ Capsules of C Programming

1.3.2 Computer Software

Software is a computer program which is a sequence of instructions designed to direct a

computer to perform certain functions. Software is generally categorized as system software and

application software. Users operate the software where software operate the hardware to process

data and get results. Following diagram shows the relationship among user, software and

hardware.

The type of software which is most essential for computer operation and controls the hardware

components of a computer are called system software. System software refers to the files and

programs that make up computer's operating system. The programs that are part of the system

software include assemblers, compilers, file management tools, system utilities and debuggers.

The types of software which is used for user specific applications are called application

software. These are the applications that most of the users are familiar with, such as Office

Word, Excel, Powerpoint and Netscape Communicator.

1.4 COMPUTER PROGRAM AND PROGRAMMING LANGUAGES

Computer program is a set of instructions that, when executed, causes the computer to behave in

a predetermined manner.

Computers generally don’t understand natural languages like English or Nepali unless it is

instructed. The languages, which are used to instruct the computer to perform certain tasks are

called computer programming languages. There are many programming languages like C, C++,

Pascal, BASIC, FORTRAN, COBOL, LISP, etc.

1.4.1 Types or Levels of Programming Languages

Programming languages are categorized in the following:

Hardware

System Software

Application Software

Users

Computer Fundamentals & Historical Development of C / 7

Low-level language is a programming language in which each statement or instruction is

directly translated into a single machine code.

A high-level programming language is a language that is more user-friendly, to some extent

platform-independent and abstracts from low-level computer processor operations such as

memory accesses. They are similar to natural languages (like English) and so are easy to write

and remember.

I. First Generation Programming Language: Machine Language

Machine language has the least possible level at which we can program a computer in its own

native machine code, consisting of strings of 1's and 0's, and are stored as binary numbers. The

main advantage of machine language is that they execute faster than high-level language.

However, machine languages are more difficult to write.

II. Second Generation Programming Language: Assembly Language

Assembly language is categorized as the second generation programming language. it is a

symbolic representation (called mnemonics) of machine code. Assembly program is closer to

plain english words, hence a bit more easier to read and write the program as compared with

machine language but the computer can’t understand them directly. The assembly-language

program must be translated into machine code by a separate program called an assembler.

III. Third Generation Programming Language (3GL): High Level Language

It is a refinement of second generation programming language (2GL). 3GL was introduced to

make the language more programmer friendly. High level languages falls somewhere between

assembly language and natural languages. It includes languages like FORTRAN, COBOL,

BASIC, C, C++.

IV. Fourth Generation Programming Language (4GL): Very High Level Language

The higher the generation of language means the more efficient, faster and user friendly

programming language. The features of 4GL are:

Programming

Language

Low-Level High-Level

Machine Languages Assembly

Languages

Fig 1.4 .1 Classification of programming languages

The programming language that bridges the gap between traditional machines/ assembly

language and conventional high level language is called middle level language . C language

on one hand supports assembly language and we can access memory directly using pointer,

on the other hand C supports high level language features. However C is categorized into

high level language, it is easy to create machine code using C. Hence, C is sometimes also

called middle level language.

8/ Capsules of C Programming

a. It is a non-procedural programming language i.e. query language.

b. Code comprising of English like sentences.

c. Program is portable and easily expandable.

d. 4GL code enhances the productivity of the programmers as they have to type fewer
lines of code.

A typical example of 4GL is the query language that allows user to extract data from database,
data warehouse and big data.

V. Fifth Generation Programming Language (5GL): Future Language

Fifth generation languages are based on Artificial Intelligence. It solves the problem using
constraints given to the program. 5GLs are considered to be the wave of the future and predicted
to replace all other languages for system development. However, it is a highest level of
programming language that meets the visual programming requirements. Examples of 5GL are
Prolog, OPS5 and Mercury.

3GL, 4GL and 5GL are in overall categorized into High Level Languages. From the
programmers point of view, using high level language is time saving. It is designed to reduce
programmer’s effort. High level languages are simply classified into following two categories:

 Procedure Oriented (Function oriented) Programming

 Object Oriented Programming

One or more related blocks of statements that perform some complete function are grouped
together into a program module is simply called a Procedure. Procedure is just a mini program
that performs specific task. The languages that are used to write such procedures to perform the
task defined are called procedure oriented languages.

Object-oriented programming (OOP) is a programming language model organized around
objects rather than "actions" and data rather than logic. C++ and JAVA are the examples of
Object Oriented programming language.

1.4.2 Compiler, Interpreter and Assembler

The compiler takes the source code as input and produces the machine language code (object
code) for the machine on which it is to be executed as output.

An interpreter, like compiler, is also translator which translates high level language into a
machine level language. The difference between compiler and interpreter is that the interpreter
translates and executes the program line by line.

An assembler is a program that takes basic computer instructions (Assembly Language) and
converts them into a pattern of bits.

Compiling->Linking/Loading-> Executing

Compiling the program means generating an intermediate kind of file called object file. The
object file is required to link with built-in library files and possible other user-generated object
files to make the program executable.

Computer Fundamentals & Historical Development of C / 9

Bigger programs may have several separate files, some of which may already be compiled. Here

the job of linker is to combine these files into a single executable file. Hence from coding to

execution the basic steps are:

i. Program writer (also called coder) creates .c source files which is then passed to

compiler producing .obj object file

ii. .obj object files are passed to the linker/loader which includes all necessary library files

to produce .exe executable files.

iii. .exe file is the executable file which is then loaded into the memory to be executed by

the user. User can run this executable file anytime to perform his/her tasks required.

The relationship between compilation and linking process is depicted below:

Fig: 1.4.2 Compilation, Linking and Execution

The executable files will successfully be created if there are no any errors encountered by

compiler and linker. The job of loader is to load the executable program (binary program) into

memory for execution.

 Compiler translates the block of high level source codes at a time into another file

consisting of machine language.

 Assembler translates block of assembly language source codes at a time into

another file consisting of machine language.

 Interpreter translates program source code line by line.

(Source File)

eg: ellipse.c

Compiler

(Object File)

ellipse.obj

Library files
User generated

library files

Linker & Loader

(Executable File)

ellipse.exe

#include Files

10/ Capsules of C Programming

1.5 PROBLEM SOLVING USING COMPUTER

The steps of problem solving are:

1) Problem Analysis

2) Algorithm Development

3) Flowcharting

4) Programme Coding

5) Compilation & Execution

6) Debugging & Testing

7) Documentation

1.5.1 Problem Analysis

Let us consider a problem: “Given the two dimensions (major axis, minor axis) of an

ellipse, what is the area?”

Problem analysis is the process of decomposing whole or parts of system into smaller parts

or modules. Then identify possible inputs, processes and outputs with problems. Basically

we do syntactic and semantic analysis in this phase.

Documentation

Debugging & Testing

Compilation & Execution

Program Coding

Flowcharting

Algorithm Development

Problem Analysis

Fig 1.5: Steps in problem solving by a computer

Computer Fundamentals & Historical Development of C / 11

Analysis of the given problem:

Decomposition of problem description is the first step of solving problem. It could be

achieved syntactic analysis like doing it into flowing five steps:

I. Identify all the nouns in the sentence

Given 2 dimension of an ellipse (major & minor axis), calculate the area

The nouns in the problem specification identify descriptions of information that you

will need to either identify or keep track of. Once these nouns are identified, they

should be grouped into one of two categories:

Input (items either already known or getting it from the user)

Output (items that finds out by manipulating the input)

Input Output

Dimensions

We suppose, these

dimensions are given

Area

(we need to calculate this)

Major

Minor

Pi

Ellipse

II. Eliminate redundant or irrelevant information

There may be some information in the problem description that make it into our

input/output chart that we really don’t need to solve the problem (that is, not all of the

nouns may be relevant). Also, there may be some nouns that appear redundant

(Information we already have in our table, just in a different form).

Input Output

Dimensions

We don’t need the noun “Dimensions”

because we already have major and

minor axis, we also don’t need “ellipse”

to calculate volume, if we know the

dimension

Area

(we need to calculate

this)

Major

Minor

Pi

Ellipse

We need to keep the most specific nouns possible in the table. When in doubt, try to

piece it together logically: when figuring out the area, which nouns would be the most

useful to you?

12/ Capsules of C Programming

III. Identify all of the verbs in the sentence

The verbs in the problem specification identify what actions your program will need to
take. These actions, known as processing are the steps between your input and your
output.

Input Processing Output

Major

Calculate (apply mathematical formula) Area Minor

pi

IV. Link your inputs, processes, and output

This step is as simple as drawing lines between the relevant information in your chart.
Your lines show what inputs need to be processed to get the desired output. In our
example, we need to take our major, minor, and Pi (as constant value) and multiply
them, to give us our desired area.

V. Use external knowledge to complete your solution

To solve a problem, we need to know the extra knowledge from mathematics and
science. At this point you are required to understand what “calculate” means. In some
arbitrary problem, “calculate” could refer to applying some mathematical formula or
other transformation to our input data in order to reach the desired output.

1.5.2 Algorithm Development

An Algorithm is the step-by-step description of the procedure written in human understandable
language for solving given problem.

Let us consider an example of an algorithm for making a pot of tea.

Step1: Start

Step2: If the kettle doesn’t contain water, then fill the kettle.

Step3: Plug the kettle into the power point and switch it on.

Step4: If the teapot is not empty, then empty the teapot.

Step5: Place tea leaves in the teapot.

Step6: If the water in the kettle is not boiling, then go to step6.

Step7: Switch off the kettle.

Step8: Pour water from the kettle into the teapot.

Step9: Stop.

It can be seen that the algorithm has a number of steps and some steps involve decision making
(Step2, Step4 and Step6) and one step (Step6) involves repetition, in this case the process of
waiting for the kettle to boil. The rest of steps are simply sequential.

Computer Fundamentals & Historical Development of C / 13

From this example, it is evident that algorithms show the following three features:

 Sequence (also known as process)

 Decision (also known as selection)

 Repetition (also known as iteration or loop)

Some conventions used in developing algorithms

 Each algorithm will be enclosed by two statements START and STOP

 To accept data from user, the INPUT or READ statement shall be used.

 To display any user message, the PRINT or DISPLAY statement shall be used.

 The relevant operators shall be used in the expression and condition based on

situation described.

For example, to write the algorithm of the problem: “Given the two dimensions (major
axis, minor axis) of an ellipse, what is the area?”

During problem analysis, we are now well known about the possible inputs and processing to be

carried out to get the output of the problem. The algorithm looks like the following:

Step1: Start

Step2: Define constant variable Pi which holds value 3.1425

Step3: Define other variables for input and output: major, minor & area

Step3: Read major and minor

Step4: Calculate the area of an ellipse:

 area = Pi*major*minor

Step5: Display area of an ellipse

Step6: Stop

1.5.3 Flowcharting

Flowchart is the graphical representation of an algorithm using standard symbols. In other words,

flowchart is a pictorial representation of an algorithm that uses boxes of different shapes and

connecting lines/arrows to denote different types of instructions.

Advantages of Flowcharts

 Communication: Flowcharts are a better way of communications.

 Effective Analysis: Flowcharts provide a clear overview of the entire problem and its

algorithm for solution.

 Proper Documentation: The flowchart provides a permanent recording of program

logic. It documents the steps followed in an algorithm.

 Efficient Coding: Flowcharts show all major parts of a program. A programmer can

code the programming instructions in a computer language more easily with a

comprehensive flowchart as a guide.

 Easy in debugging and program maintenance: Flowcharts help in the debugging

process and maintenance of operating program.

Limitations of Using Flowcharts

 Complex Logic: A flowchart becomes complex and clumsy when the program logic is

quite complicated.

 Difficulty in alteration and modifications: If alterations are required; the flowchart

may need to be redrawn completely.

14/ Capsules of C Programming

Flowchart Symbols

Arrow Used to connect flowchart symbols and the
direction indicates the flow of logic

Start/Stop/End
(Terminal)

Used to represent the beginning and end of
task

Rectangle Used for arithmetic and data manipulation
operations. The instructions are written inside
the symbol.

Input/Output Used for input (reading data) and output
(displaying data). the data to be read and
displayed are written inside the symbol.

Decision Used for decision making and branching
operations that has two alternatives (true or
false, yes or no)

Connectors Used to connect different flow lines and
remote parts of the flowcharts on the same
page

Function Call Used whenever you call the function from
main or other user defined functions. Function
name is written inside the box.

For Loop Used to indicate for loop

Table 1.1 Symbols used for flowchart

Guidelines in flowcharting

 Flowcharts should be started from the top of the page and flow down and to the right.

 Only standard flowcharting symbols should be used.

 There should be start and stop on every flowchart.

 The flowchart should be clear, neat, and easy to follow. There should be no ambiguity

in understanding the flowchart.

 The direction of flow line of a procedure or system should be from left to right or top

to bottom.

 Only one flow line should emerge from a process symbol.

 Only one flow line should enter a decision symbol, but two or three flow lines, one

for each possible answer, can leave the decision symbol.

 Only one flow line is used in conjunction with a terminal (Start and Stop) symbol.

 The contents of each symbol should be written legibly. English like language should

be used in flow charts, not specific programming language.

 If the flowchart becomes complex, connector symbols should be used to reduce the

number of flow lines. The intersection of flow lines should be avoided to make the

flow chart a more effective and better way of communication.

Example flowchart of ellipse problem: To write the flowchart of the problem: “Given the
two dimensions (major axis, minor axis) of an ellipse, what is the area?”

Computer Fundamentals & Historical Development of C / 15

1.5.4 Coding

The coding is the process of transforming the program logic design into a computer language
format. This stage translates the program design into computer instructions using some
programming languages like c, c++, java etc. During coding of program, the programmer should
eliminate all syntax and format errors from the program and all logic errors are detected and
resolved during this process.

Example for writing a source code of an ellipse problem: To write the code of the

problem: “Given the two dimensions (major axis, minor axis) of an ellipse,

what is the area?

Coding is the process of transferring paper works like algorithm and flowchart into

computer program following the well defined syntax using the programming language

like C, C++, JAVA etc..

//ellipse.c

/*this code once compiled and executed, calculates

the area of an ellipse after reading major and minor

axis*/

#include<stdio.h>

#include<conio.h>

#define Pi 3.1415

int main (void)

{

float major, minor, area;

//clrscr();

printf(“Enter Major and Minor Axis of an Ellipse:”);

scanf(“%f %f”, &major, &minor);

area = Pi*major*minor;

printf(“\n The area of an ellipse is: %.2f”, area);

getch();

return 0;

}

Stop

Display Area

area = Pi * major * minor

Read two values

major & minor

Define constant and Variables

Pi=3.1415, major, minor, area

Start

The program

code is

written here

just to make

understand

that “coding”

is one of the

problem

solving steps

in computer.

Please refer

to section 1.9

“structure of

C program” to

know about the

details of

program

structure and

syntax.

16/ Capsules of C Programming

1.5.5 Compilation and Execution

The process of changing high level language into machine level language is known as compilation.

It is done by special software, known as compiler. During the execution, the program may ask user

for inputs and generates outputs after processing the inputs. Hence, the sequence is:

Fig 1.5.5: coding, compilation and execution steps

1.5.6 Debugging & Testing

Debugging is the process of discovery and correction of programming errors. Even after taking

full care in program design and coding, some errors may remain in the program because the

designer/programmer might have never thought about a particular case. These errors may

appear during compilation or linking or execution of the program. Program testing and

debugging are closely related.

ERROR

Error means failure of compilation and execution of the program successfully and/or getting

incorrect results. The debugging and testing tasks are for avoiding errors in the program. In the

programming, errors are categorized into two as follows:

 Syntax Errors &

 Semantic Errors

Your first attempt of compiling a program won’t be successful if you mistakenly typed the

program which may not be coded into properly defined syntax. Compiler will generate the

syntax error if the program code is not correctly written.

1.5.7 Program Documentation

“Program documentation” is the systematic writing of activities from problem analysis to

debugging/testing phases including operational information and presenting it as a report.

There are two types of documentations:

a) Programmer’s Documentation (Technical Documentation)

b) User Documentation (User Manual)

Programmer’s documentation is prepared for future reference to the programmers who maintain,

redesign and upgrade the system. The user documentation provides support to the user of the

program. This provides instructions for installation of the program and use of it effectively.

We debug the program generally to avoid syntax errors as well as semantic errors. Semantic

or logic errors are more generally captured while testing the output or verifying the result to

make sure that your logic is working properly. Additionally there may appear run time error

during the execution of program like stack overflow and floating point error like divided by zero

Loader Linker Compiler

Execution Loading Linking Compilation Program Code

Computer Fundamentals & Historical Development of C / 17

1.6 SOLVED EXAMPLES

1. Write an algorithm and draw flowchart for finding the sum of any two numbers.

Algorithm:

1. Start

2. Display “Enter two numbers”.

3. Read A and B

4. C=A+B

5. Display "C as sum of two

numbers".

6. Stop.

Flowchart:

2. Write an algorithm and draw a flowchart for calculating the simple interest

using the formula SI=(P*T*R)/100, where P denotes the principal, T time and

R rate of interest.

Algorithm:

1. Start

2. Display “Enter value of P, T and R”.

3. Read P, T and R.

4. Calculate simple interest using formula,

SI=(P*T*R)/100.

5. Display SI as simple interest.

6. Stop

Flowchart:

3. Write an algorithm and draw flowchart to determine a number whether it is

positive or negative.

Algorithm:

1. Start.

2. Print “Enter a number which is to be tested for +ve or -ve”.

Calculate Simple Interest

SI as SI=(P*T*R)/100

END

Read values for

P,T and R

Display Value of SI

START

Read two

numbers, A & B

END

C=A+B

Display C as Sum of A & B

START

18/ Capsules of C Programming

3. Read NUM from keyboard.

4. If NUM<0, then Display message “The number is Negative” otherwise display

message “The number is positive”

5. Stop

Flowchart:

Note: Here zero is assumed +ve number

4. Write an algorithm and draw flowchart to test a number for even or odd.

Algorithm:

1. Start

2. Display “Enter a number which is to be tested for even or odd”.

3. Read NUM from user.

4. Calculate remainder REM using integer division of NUM by 2.

5. If REM =0, then print “The number is even” else print “The number is odd”

6. Stop.

START

END

Read a number,
num

Is num

< 0 ?

Display message
“Negative Number”

True False

Display message
“Positive Number”

Computer Fundamentals & Historical Development of C / 19

Flowchart:

5. Write an algorithm and draw flowchart to find the largest among three numbers.

Algorithm:

1. Start

2. Print “Enter three numbers”.

3. Read three numbers: A, B & C.

4. If A>=B and A>=C, then print “A is greatest”.

5. If B>=A and B>=C then print “B is greatest” else print “C is greatest”.

6. Stop

 Or

1. Start

2. Print “Enter three numbers”.

3. Read A,B,C

4. If A>B then

If A>C then

 Print “A is greatest”

Else

Print “C is greatest”.

Else

If B>C then

 Print “B is greatest”.

Else

Print “C is greatest”

5. Stop

START

Read a number,
num

Is remainder equal

to 0?
?

Display message
“Odd Number”

END

True False

Calculate remainder by
dividing num by 2

Display message
“Even Number”

20/ Capsules of C Programming

Flowchart:

6. Write an algorithm and draw flowchart to read N numbers from user and

display sum of all entered numbers.

Algorithm:

1. Start

2. Print “How many numbers?”

3. Read N

4. Initialize variables SUM to 0 and COUNTER to 1 i.e. SUM=0 and COUNTER=1.

5. Print “Enter a number”.

6. Read NUM.

7. SUM=SUM+NUM

8. COUNTER=COUNTER+1.

9. If COUNTER<=N then goto step 5

10. Print SUM

11. Stop

is
A>B?

True False

is

A>C?

is

B>C?
True

False True False

Read numbers: A,
B, C

START

END

Display C as
largest

Display B as
largest

Display A as

largest

Computer Fundamentals & Historical Development of C / 21

Flowchart:

7. Develop an algorithm and draw flowchart for finding the sum of the series

1+2+3+4+….upto N terms.

Algorithm:

1. Start

2. Print “Enter the value of N”.

3. Read N.

4. Initialize variables SUM to 0 and COUNER to 1 i.e. SUM=0 and COUNTER=1.

5. SUM=SUM+COUNTER.

6. COUNTER=COUNTER+1.

7. If COUNTER<=N then goto step 5

8. Print SUM.

9. Stop

False is COUNT<=N?

Read value for N

START

SUM=0 & COUNT=1

SUM=SUM+NUM

Read a number,
NUM

COUNT=COUNT+1

True

Display SUM

STOP

22/ Capsules of C Programming

Flowchart:

8. Write an algorithm and draw flowchart for calculating the factorial of a given

 number N.

Algorithm:

1. Start

2. Print “Enter a number”.

3. Read NUM.

4. Initialize variables FACT to 1 and COUNTER to 1 i.e. FACT=1 and COUNTER=1.

5. While COUNTER<=NUM

FACT=FACT*COUNTER.

COUNTER=COUNTER+1.

 End of While

6. Print FACT as factorial of the number NUM.

7. Stop

True

False is COUNT<=N?

Read value for N

START

SUM=0 & COUNT=1

SUM=SUM+COUNT

COUNT=COUNT+1

Display SUM

STOP

Computer Fundamentals & Historical Development of C / 23

Flowchart:

1.7 HISTORICAL DEVELOPMENT OF C

The root of all modern languages is ALGOL, It was introduced in the early 1960s and was the

first computer language to use a block structure. Martin Richards developed a language

primarily for writing system software called BCPL (Basic Combined Programming Language)

in 1997. By inheriting the principle features of BCPL, Ken Thomson developed B in 1970.

BCPL and B were system programming languages. Inheriting the concepts from ALGOL,

BCPL & B, C was developed with added concepts and powerful features by Dennis Ritchie at

the bell laboratories in 1972.

The origin of C is closely tied to the development of the UNIX operating system. It was named

"C" because many of its features were derived from an earlier language "B”. C is a general-

purpose, block structured, procedural, imperative computer programming language. Although C

was designed as a system implementation language, it is also widely used for applications. C was

standardized by ANSI (American National Standard Institute) in 1980.

C was standardized and approved by American National Standard Institute (ANSI) as ANSI C in

1989. It was then stardardized by Internatinoal Standard Organization (ISO) in 1990.

Today, C is running under variety of operating systems and hardware platforms. Some of the most

common C compilers are Turbo C/C++ IDE, Borland C/C++, GCC, Microsoft Visual C++, etc.

C++ is an object oriented language based on C was developed in 1990s. Similarly, a pure object

oriented language called JAVA was also developed with C++. The few features of C++/JAVA

were added to C and was standardized as C99 in 1999.

False is COUNT<=NUM?

Read a number,
NUM

START

FACT=1 & COUNT=1

FACT=FACT*COUNT

COUNT=COUNT+1

True

Display FACT

STOP

24/ Capsules of C Programming

1.8 EXECUTING A C PROGRAM

Executing a program written in C involves a series of steps –

1.8.1 Writing a C Program

Computer instructions are written in a text editor to perform certain jobs. These instructions are

written using correct syntax of the language we are using. The pogramming source code can be

written using any text editor such as Notepad or text editor of an Integrated Development

Environment (IDE) like Turbo C or code::blocks etc. Whichever editor it is, we write the code and

save with extension .c like cprogram.c.

1.8.2 Compiling and Linking the program

The computer instructions written in the form of source code are translated into a form that is
suitable for execution by the computer. The translation is done by a special program called compiler
that processes statements written in programming language and converts them into a machine
language or code that a computer's processor uses.

Linker provides instruction to the compiler to link functions with program from the system library.

For example, the statement. #include<stdio.h> links input/output functions like printf()and

scanf() with the program.

1.8.3 Executing the program

Executing the program loads the created executable object code into the computer memory and
executes the instruction. Following diagram shows the steps of compilation and linking of C
program.

Fig 1.8.3: compiler and linker relationship

#include<stdio.h>

int main(void)

{

printf(“ welcome to c

programming”);

return 0;

}

.exe Executable Files

Include Files

(header files)

Compiler

.c source file

Library Files
.obj Object Files

Other user generated

object files

Linker

Computer Fundamentals & Historical Development of C / 25

Fig. 1.8.4 Process of compiling and running a C program

Write/Edit

Source Code

Compile

Source Code

Syntax

Errors?

Link with

System Library

Execute

Object Code

Logic & Data

errors?

See Output

C Compiler

System Library

Input Data

Stop

Yes

Yes (Logic Error)
Yes (Data Error)

Object Code

Executable Object Code

No Errors

Source Code

26/ Capsules of C Programming

1.9 BASIC STRUCTURE OF C PROGRAM

The structure of C program implies the composition of a program, i.e. it answers questions such

as “what are main components to write a C program? How are they organized?” Fig. 1.9 shows

the parts that are included in the structure of a C program –

Fig. 1.9 Basic structure of a C program

i. Documentation Section

This section contains a set of comment lines giving the name of program, the author, algorithms,

methods used and other details.

 For example, the title of a program can be written in this section as,

 /* This program displays natural numbers from 1 to 10 */

 Note: /* ... */ denotes multiple line comments in C.

Documentation Section

Link Section

Definition Section

Global Declaration Section

main() Function Section

{

}

Local Declaration

Statements

Subprogram Section

 Function 1 ()

 {

Local Declaratoin

Statements

 }

…………………….

Function n

{

Local Declaration

Statements

}

(User-defined functions)

Computer Fundamentals & Historical Development of C / 27

ii. Link Section

This section provides instruction to the compiler to link functions with program from the system

library. For example, the statement.

#include<stdio.h> links input/output functions like printf()and scanf() with the program. This

section is also called the header declaration section.

iii. Definition Section

In this section, all symbolic constants are defined. Symbolic constants are defined in later chapters.

iv. Global Declaration Section

The variables which are used in more than one functions or blocks are called global variables.

These variables are defined or declared in this section. This section also declares all the user-defined

functions.

v. Main() Function Section

Every C program starts with a main() function. Within main() function, there are declaration and

executable parts. The declaration part declares all the variables used in the execution part.

vi. Subprogram Section

This section contains all the user-defined functions that are called in the main function.

The sections above the global declaration can be categorized into preprocessor directives

section. This preprocessor directives contain special instructions that include how to prepare the

program for compilation. Include is a preprocessor command which informs compiler to include

some information from the header file.

All the sections except the main() function section may be absent when they are not required. These

are demonstrated in the following examples –

/* A C program to display “Welcome to C Programming”*/

// Program coded by Hari Pd Sharma

#include<stdio.h>

#include<conio.h>

int main(void)

 {

 clrscr();

 printf("Welcome to C Programming!!!!");

 getch();

 }

What is a Header File?

There are several built-in C functions like printf(), scanf(), clrscr(), getch() defined in C

library as a header file having its .h extension. Inclusion of header files in the program is the

pre-information to the compiler regarding the library functions used and its relevant codes

to be executed. This type of pre-information is called compiler directives or preprocessor

directives.

Documentation

Section

Link Section

main()

Function

Section

Output

Welcome to C Programming!!!!

28/ Capsules of C Programming

Explanation

The first two lines

/* A C program to display “Welcome to C Programming”*/

// Program coded by Hari Pd Sharma

are comments. While compiling the program, the comments are not compiled and thus they are

not verified for syntax check. In C, we can perform commenting in two ways like by /* ..*/ and

//. We can use /*..*/ for multiple line comments and double slash (//) for single line comment.

The third and fourth lines

#include<stdio.h>

#include<conio.h>

These are the preprocessor commands which includes two header files stdio.h and conio.h.

these are the header file inclusion section in which other builtin library functions are to be

included to successfully compile the program.

The fifth line: int main(void)marks the beginning of the program. All C programs must

have at least one main function. It is the entry point of our program. Execution of any program

starts from the main function and ends at main function. The word before main is the return

type of the function. Here the return type is int which means the function does return an integer

value to the operating system.

The two curly braces {} are used to group the statements in the function body. The function

body contains a set of instruction to perform given task.

The statement clrscr();

is the use of library function defined under “conio.h” header file. This function is used here to

clear old content of screen. In some other program execution environment like Code::Bloks,

the function like clrscr(), getch() may not be required as it automatically flush the display

screen on its consecutive next run.

The statement printf("Welcome to C Programming!!!!");

is used to display “Welcome to C Programming!!!!" in the computer screen. The printf function

is library function used for output declared in “stdio.h” header file, so it is included in the

program.

Again, the statement getch() is not compulsory here. If we have not used this function, we

have to press Alt +F5 to see the output of the program in TURBO C. Here, it is important to

notice that every C statement ends with semi-colon (i.e. ;).

9. Write a program to display “ This is your first C lab in the university”

#include<stdio.h>

#include<conio.h>

int main(void) // main function

{

// opening braces opens the main function body

clrscr();

/*The clrscr() is a library function included in conio.h header file. It

clears the display screen of your output window. The requirements of this

function depends on the use of IDE. Like in TURBO C/C++ IDE, we have to clear

the previous output screen and hence this function is required. But in IDE

like CODE::BLOCKS it is not required. */

Computer Fundamentals & Historical Development of C / 29

printf(“This is your first C lab in the university”);

/* printf() function is defined in stdio.h header file. Every statement in C

program should bue terminated by semicolon (;) */

return 0;

/*The main function is interger type and has to return integer value to OS

hence this statement is required at the end of every main function if it is

of int.*/

} //closing braces close the main function body

10. Write a program to add two numbers.

/* A C program to add two numbers*/

/* Program coded by Hari Pd Sharma */

#include<stdio.h>

#include<conio.h>

int main(void)

{

int a,b,sum;

a = 10;

b = 20;

sum = a + b;

printf(“The sum is %d”,sum);

getch();

return 0;

}

11. Write a program to calculate area of an ellipse.

//ellipse.c

/*this code once compiled and executed, calculates

the area of an ellipse after reading major and

minor axis*/

#include<stdio.h>

#include<conio.h>

#define Pi 3.1415

float area_of_ellipse(float);

int main (void)

{

float major, minor, area;

//clrscr();

printf(“Enter Major and Minor Axis of an llipse:”);

scanf(“%f %f”, &major, &minor);

area = area_of_ellipse(major, minor);

printf(“\n The area of an ellipse is: %.2f”, area);

getch();

return 0;

}

//user defined function

float area_of_ellipse(float a, float b)

{

return (PI*a*b);

}

Documentation

Section

Link Section

main()

Function

Section

Documentation

section.

Comments.

Comments. Link Section.

(Header

Declaration)

Definition Section.

Function Prototyping

main() function

section

Subprogram

Section

(User defined

function)

30/ Capsules of C Programming

1.10 EXERCISES

1. Write algorithm and flowchart to cook half KG rice using electric ricecooker.

2. Write algorithm and flowchart to open your desktop computer.

3. Write algorithm and flowchart to wash your clothese by washing machine.

4. Write algorithm and flowchart to fry chicken in a fly pan.

5. Write algorithm and flowchart to start a motorbike.

6. Write algorithm and flowchart to cook daal (lentil) in pressure cooker.

7. Perform problem analysis, Write algorithm and flowchart to calculate area of isosceles

right angle and equilateral triangle.

8. Perform problem analysis, Write algorithm and flowchart to calculate area of

parallelogram and rectangle.

9. Write algorithm and flowchart to calculate energy of a capacitor (if C is capacitance and

V is the voltage then energy of capacitor is (E =
1

2
 CV

2
)

10. Write algorithm and flowchart to calculate area of pentagon and octagon.

11. Write algorithm and flowchart to fixed RAM into a system unit.

12. Write algorithm and flowchart to replace 500 GB hard disk into your desktop computer.



What is an IDE?

An Integrated Development Environment (IDE) is a common programming platform that

allow computer programmer to invoke all the operations necessary to develop a program,

including editing, compiling, linking and program execution. IDE helps us to debug the

program and it provides help facilities through menu selection. Forexample TURBO C/C++,

CODE::BLOCKS IDE

