
1

Slides for Chapter 5:
Distributed objects and remote invocation

From Coulouris, Dollimore and Kindberg
Distributed Systems:

Concepts and Design
Edition 4, © Addison-Wesley 2005

2

Figure 5.1
Middleware layers

Applications

Middleware
layersRequest reply protocol

External data representation

Operating System

RMI, RPC and events

3

5.1 Introduction

aMiddleware
`Software that provides a programming model above the basic building

blocks of processes and message passing.
`An important aspect of middleware is the provision of location

transparency and independence from the details of communication
protocols, operating systems, and computer hardware.

`Location transparency:
⌧In RPC, the client that calls a procedure cannot tell whether the procedure

runs in the same process or in a different process, nor does the client
need to know the location of the server.

⌧In RMI, the object making the invocation cannot tell whether the object it
invokes is local or remote.

⌧In distributed event-based programs, the objects generating events and
the objects that receive notifications of those events need not be aware of
one another's location.

4

aMiddleware (Cont’d)
`Communication protocols: The protocols that support the middleware

abstractions are independent of the underlying transport protocols.
`Computer hardware: External data representations are described in

last chapter.
`Operating systems: The higher-level abstractions provided by the

middleware layer are independent of the underlying operating
systems.

`Use of several programming language: some middleware is designed
to allow distributed applications to use more than one programming
language.

5

5.1.1 Interfaces

a An explicit interface is defined for each programming module in order to
control the possible interactions between modules.

a The interface of a module specifies the procedures and the variables that
can be accessed from other modules.

a Modules are implemented so as to hide all information about them except
that which is available through its interface.

6

a Interfaces in distributed systems:
`In a distributed program, the modules can run in separate processes.
`It is not possible for a module running in one process to access the

variables in a module in another process – thus, the interface of a module
that is intended for RPC or RMI cannot specify direct access to variables.

`The specification of a procedure or method in the interface of a module in a
distributed program describes the parameters as input or output.

`Input parameters are passed to the remote module by sending the values of
the arguments in the request message and then supplying them as
arguments to the operation to be executed in the server.

`Output parameters are returned in the reply message.
`When a parameter is used for both input and output, the value must be

transmitted in both the request and reply messages.
`Another different between local and remote modules is that pointers in one

process are not valid in another remote one.

7

a Service interfaces:
`In the client-server model, each server provides a set of procedures

that are available for use by clients.
`The service interface is used to refer to the specification of the

procedures offered by a server, defining the types of the input and
output arguments of each of the procedures.

a Remote interfaces:
`In the distributed object model, a remote interface specifies the

methods of an object that are available for invocation by objects in
other processes, defining the types of the input and output arguments
of each of them.

`The difference is that the methods in remote interfaces can pass
object as arguments and results of methods.

`Reference to remote objects may also be passed.
8

a Interface definition languages:
`An RMI mechanism can be integrated with a particular programming

language if it includes an adequate notation for defining interfaces –
allowing input and output parameters to be mapped onto the
language’s normal use of parameters.

9

Figure 5.2
CORBA IDL example

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

10

5.2 Communication between distributed objects

a Address communication between distributed objects by
means of RMI. The material is presented under the following
headings
`The object model
`Distributed objects
`The distributed object models
`Design issues
`Implementation
`Distributed garbage collection

11

5.2.1 The object model

a An object’s data should be accessible only via its methods.
a Object references:

`Objects can be accessible via object reference.
`To invoke a method in an object, the object reference and method

name are given, together with any necessary arguments.
`The object whose method is invoked is called the target or receiver.

a Interfaces:
`Provides a definition of the signatures of a set of methods without

specifying their implementation.

12

a Actions:
`Action in an object-oriented program is initiated by an object invoking

a method in another object.
`An invocation can include additional information (arguments) needed

to carry out the method.
`The receiver executes the appropriate method and then returns

control to the invoking object.
`An invocation of a method can have three effects:

⌧The state of the receiver may be changed.
⌧A new object may be instantiated.
⌧Further invocations on methods in other objects may take places.

13

a Exceptions:
`Programs can encounter many sorts of errors and unexpected

conditions of varying seriousness.
`Exceptions provide a clean way to deal with error conditions without

complicating the code.
`A block of code may be defined to throw an exception whenever

particular unexpected conditions or error arise.
`This means that control passes to another block of code that catches

the exception.
`Control does not return to the place where the exception was thrown.

14

a Garbage collection
`Necessary to provide a means of freeing the space occupied by

objects when they are no longer needed.
`This process is called garbage collection.
`When a language does not support garbage collection, the

programmer has to cope with the freeing of space allocated to objects.

15

5.2.2 Distributed objects

aMay adopt the client-server architecture.
`Objects are managed by servers and their clients invoke their methods

using remote method invocation.
`In RMI, the client’s request to invoke a method of an object is sent in a

message to the server managing the object.
`The invocation is carried out by executing a method of the object at the

server and the result is returned to the client in another message.

a Can assume other architectural models.
`E.g., objects can be replicated in order to obtain the usual benefits of fault

tolerance and enhance performance.

a The fact that objects are accessed only via their methods gives
another advantage for heterogeneous systems in that different
formats may be used at different sites.

16

Figure 5.3
Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

17

5.2.3 The distributed object model

a Each process contains a collection of objects
`Some of which can receive both local and remote invocations.
`The other objects can receive only local invocations.

aMethod invocations between objects in different processes
are known as remote method invocations.

aMethod invocations between objects in the same process are
local method invocations.

a Two fundamental concepts
`Remote object reference: Other objects can invoke the methods of a

remote object if they have access to its remote object reference.
`Remote interface: Every remote objects has a remote interface that

specifies which of its methods can be invoked remotely.

18

a Remote object references:
`Remote object reference is an identifier that can be used throughout a

distributed system to refer to a particular unique remote object.
`Remote object references are analogous to local ones in that:

⌧The remote object to receive a remote method invocation is specified by
the invoker as a remote object references

⌧Remote object references may be passed as arguments and results of
remote method invocations.

a Remote interfaces:
`The class of a remote object implements the methods of its remote interface.
`Objects in other processes can invoke only the methods that belong to its

remote interface.
`Local objects can invoke the methods in the remote interfaces as well as

other methods implemented by a remote object.

19

Figure 5.4
A remote object and its remote interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

20

a Actions in a distributed object system:
`An action is initiated by a method invocation – which may result in

further invocations on methods in other objects.
`However, in the distributed case, the objects involved in a chain of

related invocations may be located in different processes or different
computers.

`When an invocation crosses the boundary of a process or computers,
RMI is used, and the remote reference of the object must be available
to the invoker.

`When an action leads to the instantiation of a new object, that object
will normally live within the process where instantiation is requested.

`Distributed applications may provide remote objects with methods for
instantiating objects which can be accessed by RMI.

21

Figure 5.5 Instantiation of remote objects

C

NM

K
invocation
remote

invocation
remote

L

instantiate instantiate

22

a Garbage collection in a distributed-object system:
`If a language supports garbage collection, then any associated RMI

system should allow garbage collection of remote objects.
`Distributed garbage collection is generally achieved by cooperation

between the existing local garbage collector and an added module
that carries out a form of distributed garbage collection.

`If garbage collection is not available, then remote objects that are no
longer required should be deleted.

a Exceptions:
`Any remote invocation may fail for reasons related to the invoked

object being in a different process or computer from the invoker.
`Remote method invocation should be able to raise exceptions.

23

5.2.4 Design issues for RMI

a RMI is a natural extension of local method invocation.
a RMI invocation semantics:

`Request-reply protocols where doOperation can be implemented in different
ways to provide different delivery guarantees.
⌧Retry request message: whether to retransmit the request message until

either a reply is received or the server is assumed to have failed.
⌧Duplicate filtering: when retransmissions are used, whether to filter out

duplicate requests at the server.
⌧Retransmission of results: whether to keep a history of result messages to

enable lost results to be retransmitted without re-executing the operations
at the server.

`Combinations of these choices lead to a variety of possible semantics
for the reliability of remote invocations as seen by the invoker (Fig 5.6)

24

Figure 5.6
Invocation semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

25

aMaybe invocation semantics:
`the remote method may be executed once or not at all.
`Maybe semantics arises when none of the fault tolerance measures is

applied.
`Can suffer from the following types of failure:

⌧Omission failure, if the invocation or result message is lost:
⌧Crash failure, when the server containing the remote object fails.

`Maybe semantics is useful only for applications in which occasional
failed invocations are acceptable.

26

a At-least-once invocation semantics:
`The invoker receives either a result or an exception informing it that no

result was received.
`Can suffer from the following types of failure:

⌧Crash failures when the server containing the remote object fails.
⌧Arbitrary failures. In cases when the invocation message is retransmitted,

the remote object may receive it and execute the method more than once,
possibly cause wrong values to be stored or returned.

a At-most-once invocation semantics:
`The invoker receives either a result or an exception informing it that no

result was received, in which case the method will have been
executed either once or not at all.

27

a Transparency
`Remote invocations should be made transparent in the sense that the

syntax of a remote invocation is the same as that of a local invocation,
but that the difference between local and remote objects should be
expressed in their interfaces.

28

Figure 5.7
The role of proxy and skeleton in remote method invocation

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remoteclient server

servant

29

5.2.5 Implementation of RMI

a Figure 5.7
a Communication module

`The two cooperating communication modules carry out the request-
reply protocol.

`The communication module in the server selects the dispatcher for the
class of the object to be invoked, passing on its local reference, which
it gets from the remote reference module in return for the remote
object identifiers in the request message.

30

a Remote reference module
`Responsible for translating between local and remote object

references and for creating remote object references.
`The remote reference module in each process has a remote object

table that records the correspondence between local object references
in that process and remote object references.

`The actions of the remote reference module are as follows:
⌧When a remote object is to be passed as argument or result for the first

time, the remote reference module is asked to create a remote object
reference, which it adds to its table.

⌧When a remote object reference arrives in a request or reply message,
the remote reference module is asked for the corresponding local object
reference, which may refer either to a proxy or to a remote object.

`This module is called by components of the RMI software when they
are marshalling and unmarshalling remote object references.

31

a Servants
`A servant is an instance of a class which provide the body of a remote

object.
`Handles the remote requests passed on by the corresponding skeleton.
`Live within a server process.
`Created when remote objects are instantiated and remain in use until they

are no longer needed.
`Finally, being garbage collected or deleted.

32

a The RMI software
`Consists of a layer of software between the application-level objects

and the communication and remote reference modules.
`The roles of the middleware objects are as follows:

⌧Proxy – to make remote method invocation transparent to clients by
behaving like a local object to the invoker; instead of executing an
invocation, it forwards it in a message to a remote object.

⌧Dispatcher – A server has one dispatcher and skeleton for each class
representing a remote object.

⌧Skeleton – the class of a remote object has a skeleton, which implements
the methods in the remote interface. A skeleton method unmarshals the
arguments in the request message and invokes the corresponding method
in the servant.

33

a Generation of the classes for proxies, dispatchers, and
skeletons --- are generated automatically by an interface
compiler.

a Server and client programs
`The server program contains the classes for the dispatchers and

skeletons, together with the implementations of the classes of all of
the servants that it supports.

`In addition, the server program contains an initialization section – for
creating and initializing at least one of the servants to be hosted by the
server.

`The client program will contain the classes of the proxies for all of the
remote objects that it will invoke.

34

a The binder:
`A binder in a distributed system is a separate service that maintains a

table containing mappings from texture names to remote object
references.

`It is used by servers to register their remote objects by name and by
clients to look them up.

a Server threads:
`Whenever an object executes a remote invocation, that execution may

lead to further invocations of methods in other remote objects – which
may take some time to return.

`To avoid the execution of one remote invocation delaying the
execution of another, servers generally allocate a separate thread for
the execution of each remote invocation.

35

a Activation of remote objects
`Some applications require that information survive for long periods of

time. However, it’s not practical for the objects representing such
information to be kept in running processes for unlimited periods.

`To avoid the potential waste of resources, the servers can be started
whenever they are needed by clients.

`Processes that start server processes to host remote objects are
called activators for the following reasons.
⌧A remote object is described as active when it is available for invocation

within a running process.
⌧It is called passive if it is not currently active but can be made active.

`A passive object consists of two parts
⌧The implementation of its methods
⌧Its state in the marshalled form.

36

a Activation of remote objects (cont’d)
`Activation consists of creating an active object from the corresponding

passive object by creating a new instance of its class and initializing its
instance variables from the stored state.

`An activator is responsible for
⌧Registering passive objects that are available for activation.
⌧Starting named server processes and activating remote objects in them.
⌧Keeping track of the locations of the servers for remote objects that it has

already activated.

37

a Object location
`A location service helps clients to locate remote objects from their

remote object references.
`Use a database that maps remote object references to their probable

current locations – the location are probable because an object may
have migrated again since it was last heard of.

38

5.2.6 Distributed garbage collection

a Aim: to ensure that if a local or remote reference to an object is still held
anywhere in a set of distributed objects, then the object itself will continue
to exist, but as soon as no object any longer holds a reference to it, the
object will be collected and the memory it uses recovered.

39

Figure 5.8 Role of client and server stub procedures in RPC in the context of
a procedural language

client

Request

Reply

CommunicationCommunication
modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

40

5.3 Remote procedure call

a Very similar to an RMI in that a client program calls a procedure in another
program running in a server process.

a Servers may be clients of other servers to allow chains of RPCs.

a However, it lacks the ability to create new instances of objects and therefore
does not support remote object references.

a RPC may be implemented to have one of the choices of invocation semantics
discussed in Sec 5.2.4 – at-least-once or at-most-once are generally chosen.

a Generally implemented over a request-reply protocol.

a This software is similar to RMI except that no remote reference modules are
required, since procedure call is not concerned with objects and object
references.

41

a The client that accesses a service includes one stub procedure for each
procedure in the service interface. It behaves like a local procedure to the
client, but instead of executing the call, it marshals the procedure identifier and
the arguments into a request message – which it sends via its communication
module to the server.

a When the reply message arrives, it unmarshals the results.

a The server process contains a dispatcher together with one server stub
procedure and one service procedure for each procedure in the service
interface.

a The dispatcher selects one of the server stub procedures according to the
procedure identifier in the request message.

a A server stub procedure is like a skeleton method in that it unmarshals the
arguments in the request message, calls the corresponding service procedure,
and marshals the return values for the reply message.

42

Figure 5.10
Dealing room system

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer
Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer
Notification

Notification

43

5.4 Events and notifications

a The idea behind the use of events is that one object can react to a
change occurring in another object.

a Notifications of events are essentially asynchronous and determined by
their receivers.

a Distributed event-based systems extend the local event model by allowing
multiple objects at different locations to be notified of events taking place
at an object.

44

a Use the publish-subscribe paradigm
`An object that generates events publishes the types of events that are of

interest to them.
`Different event types may refer to the different methods executed by the

object of interest.
`Objects that represent events are called notifications.
`When a publisher experiences an event, subscribes that expressed an

interest in that type of event will receive notifications.
`Subscribing to a particular type of event is called registering interest in that

type of event.

45

a Distributed event-based systems have two main characteristics
`Heterogeneous:

⌧When event notifications are used as a means of communication between
distributed objects, components in a distributed system that were not
designed to interoperate can be made to work together. All that is
required is that event-generating objects publish the types of events they
offer, and that other objects subscribe to events and provide an interface
for receiving notifications.

`Asynchronous:
⌧Notification are sent asynchronously by event-generating objects to all the

objects that have subscribed to them to prevent publishers needing to
synchronize with subscribers.

46

a Event types:
`An event source can generate events of one or more different types.
`Each event has attributes that specify information about that event, such as

the name or identifier of the object that generated it, the operations, its
parameters, and the time.

`Types and attributes are used both in subscribing to events and in
notifications.

47

Figure 5.11
Architecture for distributed event notification

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

48

5.4.1 The participants in distributed event notification

a Figure 5.11 shows an architecture that specifies the roles played by
the objects that participate in distributed event-based systems.

a The main component is an event service that maintains a database
of published events and of subscribes’ interests.

49

a The roles of the participating objects are as follows:
`The object of interest: an object that experiences changes of state, as a

result of its operations being invoked and is considered as part of the event
service if it transmits notifications.

`Event: an event occurs at an object of interest as the result of the
completion of a method execution.

`Notification: is an object that contains information about an event. Typically,
it contains the type of the event and its attributes.

`Subscriber: is an object that has subscribed to some type of events in
another object.

`Observer objects: to decouple an object of interest from its subscribers.
`Publisher: an object that declares that it will generate notifications of

particular types of event. A publisher may be an object of interest or an
observer.

50

a Figure 5.11 shows three cases:
`An object of interest inside the event service without an observer. It sends

notifications directly to the subscribers.
`An object of interest inside the event service with an observer. The object of

interest sends notifications via the observer to the subscribers.
`An object of interest outside the event service. In this case, an observer

queries the object of interest in order to discover when events occur. The
observer sends notifications to the subscribers.

a Delivery semantics:
`A variety of different delivery guarantees can be provided for notifications –

the chosen one should depend on the requirements of applications.

51

a Roles for observers
`The task of processing notification can be divided among observer

processes playing a variety of different roles. E.g.,
⌧Forwarding –carry out all the work of sending notifications to

subscribers on behalf of one or more objects of interest.
⌧Filtering of notifications – to reduce the number of notifications received

according to some predicate on the contents of each notification.
⌧Patterns of events – A pattern specifies a relationship between several

events.
⌧Notification mailboxes – in some cases, notifications need to be

delayed until a potential subscriber is ready to receive them.

