CA464: DISTRIBUTED PROGRAMMING 1

8 Coordination-Based Systems

8.1 Coordination Models

Coordination models

Essence
We are trying to separate computation from coordination; coordination deals with
all aspects of communication between processes, as well as their cooperation.

Couplings
Make a distinction between

e Temporal coupling: Are cooperating/communicating processes alive at the same
time?

e Referential coupling: Do cooperating/communicating processes know each other
explicitly?

Coordination models

Temporal
Coupled Decoupled
Coupled Direct Mailbox
Referential
Decoupled M_eeting Generativg
oriented communication

8.2 Architectures

Architectures: Overview

Essence

e A data item is described by means of attributes.
e When made available, it is said to be published.

e A process interested in reading an item, must provide a subscription: a description of the
items it wants.

Middleware must match published items and subscriptions.

Publisher Subscriber Subscriber
A Read/Delivery
Data item @ Subscription O | |
' I Notification o
Ceg® ¢ ©° g ®0/'e 0 o
U

Publish/subscribe middleware Match

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 2

Example: TIB/Rendezvous
Coordination model
Uses of subject-based addressing = publish-subscribe system.

e Receiving a message on subject X is possible only if the receiver had subscribed to X

e Publishing a message on subject X = message is sent to all (currently running) sub-
scribers to X.

Publ. on A Subs. to A Subs. to A Subs. to A Subs. to B
Publ. on B Subs. to B
Subj: A Subj: B
[Subi: A] A A A A A
RV lib RV lib RV lib | . RVIib ' RVlib
RV RV RV I RV I RV
daemon daemon daemon ! i daemon i daemon
N W,) 1 1 Y, 3
g fmmmmmoooo oo * Network

Multicast message
on A to subscribers Multicast message on B to subscribers

Example: Lime
Lime
Every node has its own dataspace:
e When P and Q are in each other’s proximity, dataspaces become shared
e Published data items are stored locally, until removed
e P can publish data items from specific process
e Reactions describe what to do when a match is found

Transient, shared dataspace

Process Process Process

— "
Local
dataspace

dataspace dataspace

8.3 Communication
Content-based routing

Observation
When a coordination-based system is built across a wide-area network, we need an
efficient routing mechanism (centralized solutions won’t do).

Solution

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 3

e Naive: Broadcast subscriptions to all nodes in the system and let servers prepend
destination address when data item is published

e Refinement: Forward subscriptions to all routers and let them compute and in-
stall filters.

Content-based routing: naive solution

[11]
@ R1
T3] ™

8.4 Jini
Jini: Overview
Coordination-based system from Sun Microsystems

e Written in Java: one language everywhere

e Uses RMI and Java Object Serialization to enable Java objects to move around
the network

Offers network plug and play of services (Java objects)

e Services may come and go without administration and reconfiguration

Federation, not central control

e Programming interfaces designed for robustness

Jini: Main Components
e Service: an entity that another program, service or user can use. It can be a piece
of computation, a hardware device or software.

e Client: a Jini device or component that becomes a member of the federation in
order to use a Jini service.

e Lookup Service: keeps track of the services offered in the federation.

— Repository of available services.
— Stores each service as Java objects.
— Clients download services on demand.

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 4

Jini: Javaspaces

write

‘_‘_'__,tdke read (waiting)
Fﬁ?

Clients and services have to exchange information and coordinate their activity.

Jini: Javaspaces

Coordination model
Temporal and referential uncoupling by means of JavaSpaces, a tuple-based storage
system.

A tuple is a typed set of references to objects

Tuples are stored in serialized, that is, marshaled form into a JavaSpace

e To read a tuple, construct a template, with some fields left open

Match a template against a tuple through a field-by-field comparison

Jini: Javaspaces

Write A E Write B Read T

Look for
Insert a Insert a tuple that
copy of A copy of B

matches T

Return C
(and optionally
remove it)

Tuple instance —— B | ic

H =

A JavaSpace

Write: A copy of a tuple (tuple instance) is stored in a JavaSpace

Read: A template is compared to tuple instances; the first match returns a tuple instance

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 5

Take:

A template is compared to tuple instances; the first match returns a tuple instance and
removes the matching instance from the JavaSpace

Jini: Terminology

Spontaneous networking: Communication is established dynamically without
installing drivers and carrying out manual configuration

Federation: A set of software components and devices creating a distributed
system that are part of a Jini network at a given time.

Discovery: The mechanism used to locate lookup services in order to advertise
a new service in the network or find a service for use.

Leasing: Jini services grant resource usage in a time-based manner. If the pe-
riod of the grant (lease) is not renewed before its expiration, the grant will be
withdrawn at the end of the period.

Distributed event: Components of a Jini system can notify each other when some
change in their state occurs.

Group: Names used to represent a community

Jini: Behaviour
The fundamental behaviour is defined by three protocols:

Discovery: how to locate the lookup service
Join: how to register with the lookup service and export services

Lookup: how to find suitable services

Jini: Operation

Services export their services (in the form of Java objects)

Clients locate services and download objects for execution

Client-Service interaction (formation of a federation) is governed by need
Lookup services are dynamically discovered by clients and services
Services register service proxies in Jini lookup services

Clients lookup and download service proxies from discovered Jini lookup ser-
vices by interface and/or attributes

Jini: Discovery
Enables clients and services to locate lookup services.

Client discovery
— At startup; problem with latecomer services

Service announcement

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 6

— At startup; problem with latecomer clients
Two forms of discovery:
e Multicast: using UDP multicast

— Finding services at unknown but multicast-reach locations using group
names

e Unicast: using TCP/IP

— Finding services at known locations
— URL.: jini://hostname:port/

Proxy object of lookup service gets loaded to discovering entity.
Jini: Join

e Service provider already received a proxy of the lookup service
e Provider uses this proxy to register its service

e Gives the lookup service:

— its service proxy
— attributes that further describe the service

e Provider can now be found and used in this Jini federation

Jini: Lookup

e Client already received a proxy of the lookup service
e Client uses this proxy to look for a service

o Client creates template: describes the type of service sought after

Client sends template to lookup service

Lookup service performs template matching and returns result

— Strict matching: using marshalled objects for comparing fields
— Conditional matching:
* identical service identifiers
* service is instance of template
* service attributes contain at least one match for each attribute in tem-
plate

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 7

Jini: Leases

e Time-based grants of resources or services.

e Provides a method of managing resources in an environment where network fail-
ures can, and do, occur

e Loose contracts between granter and holder.
e Negotiated for a set period of time.

e Can be shared or exclusive.

Jini: Distributed Events

Enables Java event model to work in a distributed network.

Register interest, receive notification.

Allows for use of event managers.
e Can use numerous distributed delivery models (push, pull, filter...).

e Uses leasing protocol.

Jini Example: Hello World Interface

// This is the interface that the services proxy implements
public interface HelloWorldServiceInterface

public String getMessage();

Jini Example: Hello World Server

// The HelloWorld service that returns a string when asked by clients.

import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.LookupDiscovery;
import net.jini.core.lookup.Serviceltem;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceRegistration;
import java.util.Hashtable;

import java.io.IOException;

import java.io.Serializable;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

class HelloWorldServiceProxy implements Serializable,
HelloWorldServiceInterface

{
public HelloWorldServiceProxy () {}
public String getMessage () {
return "Hello, world!";
}

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 8

Jini Example: Hello World Publisher

// HelloWorldService is the "wrapper" class that handles publishing the
// service item.

public class HelloWorldService implements Runnable
// 10 minute leases
protected final int LEASE_TIME = 10 % 60 % 1000;
protected Hashtable registrations = new Hashtable(;
protected Serviceltem item;
protected LookupDiscovery disco;
// Inner class to listen for discovery events
class Listener implements DiscoveryListener
// Called when we find a new lookup service.
public void discovered (DiscoveryEvent ev)
System.out.println("discovered a lookup service!");
ServiceRegistrar[] newregs = ev.getRegistrars();
for (int i=0 ; i<newregs.length ; i++)

if (!registrations.containsKey (newregs[i])) {
registerWithLookup (newregs([i]);

Jini Example: Hello World Publisher

// Called ONLY when we explicitly discard a lookup service, not
// "automatically" when a lookup service goes down

public void discarded(DiscoveryEvent ev)
ServiceRegistrar[] deadregs = ev.getRegistrars();

for (int i=0 ; i<deadregs.length ; i++)
registrations.remove (deadregs[i]);
}

Jini Example: Hello World Publisher

public HelloWorldService () throws IOException {
item = new ServicelItem(null, createProxy(), null);

// Set a security manager

if (System.getSecurityManager () == null) {
System.setSecurityManager (new RMISecurityManager());

// Search for the "public" group.

disco = new LookupDiscovery(new String[] { "" });

// Install a listener.

disco.addDiscoveryListener (new Listener());

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 9

protected HelloWorldServicelnterface createProxy () {
return new HelloWorldServiceProxy () ;

Jini Example: Hello World Publisher

protected synchronized void
registerWithLookup (ServiceRegistrar registrar) {

ServiceRegistration registration = null;

try {
registration = registrar.register (item, LEASE_TIME);

} catch (RemoteException ex)
System.out.println ("Couldn’t register: " + ex.getMessage());
return;

if (item.serviceID == null) {
item.serviceID = registration.getServicelID();
System.out.println("Set serviceID to " + item.servicelD);

registrations.put (registrar, registration);

Jini Example: Hello World Publisher

// This thread does nothing but sleep, but it makes sure the VM
// doesn’t exit.

public void run() {
while (true) {
try {
Thread.sleep(1000000);
} catch (InterruptedException ex) {

}

// Create a new HelloWorldService and start its thread.

public static void main(String args([]) {
try {
HelloWorldService hws = new HelloWorldService();
new Thread(hws) .start ();
} catch (IOException ex)
System.out.println ("Couldn’t create service: " +
ex.getMessage());

Jini Example: Hello World Client

// A simple Client to exercise the HelloWorldService

import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.LookupDiscovery;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import java.util.Vector;

import java.io.IOException;

import java.rmi.RemoteException;

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 10

import java.rmi.RMISecurityManager;
public class HelloWorldClient implements Runnable {
protected ServiceTemplate template;
protected LookupDiscovery disco;
// An inner class to implement DiscoveryListener
class Listener implements DiscoveryListener {
public void discovered(DiscoveryEvent ev) {
ServiceRegistrar[] newregs = ev.getRegistrars();

for (int i=0 ; i<newregs.length ; i++)
lookForService (newregs[i]);

public void discarded (DiscoveryEvent ev) {}

Jini Example: Hello World Client

public HelloWorldClient () throws IOException {
Class[] types = { HelloWorldServicelnterface.class };

template = new ServiceTemplate (null, types, null);

// Set a security manager

if (System.getSecurityManager () == null)
System.setSecurityManager (new RMISecurityManager());

// Only search the public group

disco = new LookupDiscovery(new String[] { "" });

// Install a listener

disco.addDiscoveryListener (new Listener());

Jini Example: Hello World Client

// Once we’ve found a new lookup service, search for proxies that
// implement HelloWorldServiceInterface

protected Object lookForService (ServiceRegistrar lusvc) {
Object o = null;

try {
o = lusvc.lookup (template);

} catch (RemoteException ex)
System.err.println ("Error doing lookup: " + ex.getMessage());
return null;

if (o == null) {
System.err.println ("No matching service.");
return null;

System.out.println("Got a matching service.");
System.out.println("It’s message is: " +

((HelloWorldServicelInterface) o) .getMessage());
return o;

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 11

Jini Example: Hello World Client

// This thread does nothing--it simply keeps the VM from exiting while
// we do discovery.

public void run() {
while (true) {
try {
Thread.sleep(1000000);
% catch (InterruptedException ex) {

) }
// Create a HelloWorldClient and start its thread
public static void main(String args[]) {

try {

HelloWorldClient hwc = new HelloWorldClient ();
new Thread (hwc) .start ();
} catch (IOException ex)
System.out.println ("Couldn’t create client: " +
ex.getMessage());

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

	Coordination-Based Systems
	Coordination Models
	Architectures
	Communication
	Jini

