
CA464: DISTRIBUTED PROGRAMMING 1

8 Coordination-Based Systems

8.1 Coordination Models
Coordination models

Essence
We are trying to separate computation from coordination; coordination deals with

all aspects of communication between processes, as well as their cooperation.

Couplings
Make a distinction between

• Temporal coupling: Are cooperating/communicating processes alive at the same
time?

• Referential coupling: Do cooperating/communicating processes know each other
explicitly?

Coordination models

Referential

Temporal
Coupled

Coupled

Decoupled

Decoupled

Direct Mailbox

Meeting
oriented

Generative
communication

8.2 Architectures
Architectures: Overview

Essence

• A data item is described by means of attributes.
• When made available, it is said to be published.
• A process interested in reading an item, must provide a subscription: a description of the

items it wants.
• Middleware must match published items and subscriptions.

Publisher Subscriber

Subscription
Notification

Read/Delivery

Match

Data item

Publish/subscribe middleware

Subscriber

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 2

Example: TIB/Rendezvous

Coordination model
Uses of subject-based addressing⇒ publish-subscribe system.

• Receiving a message on subject X is possible only if the receiver had subscribed to X
• Publishing a message on subject X ⇒ message is sent to all (currently running) sub-

scribers to X .

Network

Multicast message on B to subscribers
Multicast message
on A to subscribers

Subj: A

Publ. on A

RV
daemon

RV lib

Subs. to A

RV
daemon

RV lib

Subj: B

RV
daemon

RV lib

Subs. to A
Publ. on B

RV
daemon

RV lib

Subs. to A
Subs. to B

RV
daemon

RV lib

Subs. to B

Example: Lime

Lime
Every node has its own dataspace:

• When P and Q are in each other’s proximity, dataspaces become shared
• Published data items are stored locally, until removed
• P can publish data items from specific process
• Reactions describe what to do when a match is found

Local

dataspace

Local

dataspace

Process Process

Local

dataspace

Process

Wireless link

Transient, shared dataspace

8.3 Communication
Content-based routing

Observation
When a coordination-based system is built across a wide-area network, we need an

efficient routing mechanism (centralized solutions won’t do).

Solution

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 3

• Naive: Broadcast subscriptions to all nodes in the system and let servers prepend
destination address when data item is published

• Refinement: Forward subscriptions to all routers and let them compute and in-
stall filters.

Content-based routing: naive solution

5

1

4
3

2
1

1

3
3

3 R1

R2

8.4 Jini
Jini: Overview

Coordination-based system from Sun Microsystems

• Written in Java: one language everywhere

• Uses RMI and Java Object Serialization to enable Java objects to move around
the network

• Offers network plug and play of services (Java objects)

• Services may come and go without administration and reconfiguration

• Federation, not central control

• Programming interfaces designed for robustness

Jini: Main Components

• Service: an entity that another program, service or user can use. It can be a piece
of computation, a hardware device or software.

• Client: a Jini device or component that becomes a member of the federation in
order to use a Jini service.

• Lookup Service: keeps track of the services offered in the federation.

– Repository of available services.
– Stores each service as Java objects.
– Clients download services on demand.

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 4

Jini: Javaspaces

Clients and services have to exchange information and coordinate their activity.

Jini: Javaspaces

Coordination model
Temporal and referential uncoupling by means of JavaSpaces, a tuple-based storage
system.

• A tuple is a typed set of references to objects

• Tuples are stored in serialized, that is, marshaled form into a JavaSpace

• To read a tuple, construct a template, with some fields left open

• Match a template against a tuple through a field-by-field comparison

Jini: Javaspaces

Tuple instance

A

A B T

C

B A

C
BB

Insert a
copy of A

Write A Write B Read T

Insert a
copy of B

Look for
tuple that
matches T

Return C
(and optionally

remove it)

A JavaSpace

Write: A copy of a tuple (tuple instance) is stored in a JavaSpace

Read: A template is compared to tuple instances; the first match returns a tuple instance

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 5

Take: A template is compared to tuple instances; the first match returns a tuple instance and
removes the matching instance from the JavaSpace

Jini: Terminology

• Spontaneous networking: Communication is established dynamically without
installing drivers and carrying out manual configuration

• Federation: A set of software components and devices creating a distributed
system that are part of a Jini network at a given time.

• Discovery: The mechanism used to locate lookup services in order to advertise
a new service in the network or find a service for use.

• Leasing: Jini services grant resource usage in a time-based manner. If the pe-
riod of the grant (lease) is not renewed before its expiration, the grant will be
withdrawn at the end of the period.

• Distributed event: Components of a Jini system can notify each other when some
change in their state occurs.

• Group: Names used to represent a community

Jini: Behaviour
The fundamental behaviour is defined by three protocols:

• Discovery: how to locate the lookup service

• Join: how to register with the lookup service and export services

• Lookup: how to find suitable services

Jini: Operation

• Services export their services (in the form of Java objects)

• Clients locate services and download objects for execution

• Client-Service interaction (formation of a federation) is governed by need

• Lookup services are dynamically discovered by clients and services

• Services register service proxies in Jini lookup services

• Clients lookup and download service proxies from discovered Jini lookup ser-
vices by interface and/or attributes

Jini: Discovery
Enables clients and services to locate lookup services.

• Client discovery

– At startup; problem with latecomer services

• Service announcement

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 6

– At startup; problem with latecomer clients

Two forms of discovery:

• Multicast: using UDP multicast

– Finding services at unknown but multicast-reach locations using group
names

• Unicast: using TCP/IP

– Finding services at known locations
– URL: jini://hostname:port/

Proxy object of lookup service gets loaded to discovering entity.

Jini: Join

• Service provider already received a proxy of the lookup service

• Provider uses this proxy to register its service

• Gives the lookup service:

– its service proxy
– attributes that further describe the service

• Provider can now be found and used in this Jini federation

Jini: Lookup

• Client already received a proxy of the lookup service

• Client uses this proxy to look for a service

• Client creates template: describes the type of service sought after

• Client sends template to lookup service

• Lookup service performs template matching and returns result

– Strict matching: using marshalled objects for comparing fields
– Conditional matching:

∗ identical service identifiers
∗ service is instance of template
∗ service attributes contain at least one match for each attribute in tem-

plate

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 7

Jini: Leases

• Time-based grants of resources or services.

• Provides a method of managing resources in an environment where network fail-
ures can, and do, occur

• Loose contracts between granter and holder.

• Negotiated for a set period of time.

• Can be shared or exclusive.

Jini: Distributed Events

• Enables Java event model to work in a distributed network.

• Register interest, receive notification.

• Allows for use of event managers.

• Can use numerous distributed delivery models (push, pull, filter...).

• Uses leasing protocol.

Jini Example: Hello World Interface

// This is the interface that the services proxy implements

public interface HelloWorldServiceInterface
{

public String getMessage();
}

Jini Example: Hello World Server

// The HelloWorld service that returns a string when asked by clients.

import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.LookupDiscovery;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceRegistration;
import java.util.Hashtable;
import java.io.IOException;
import java.io.Serializable;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;

class HelloWorldServiceProxy implements Serializable,
HelloWorldServiceInterface

{
public HelloWorldServiceProxy() {}

public String getMessage() {
return "Hello, world!";

}
}

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 8

Jini Example: Hello World Publisher

// HelloWorldService is the "wrapper" class that handles publishing the
// service item.

public class HelloWorldService implements Runnable
{

// 10 minute leases

protected final int LEASE_TIME = 10 * 60 * 1000;
protected Hashtable registrations = new Hashtable(;
protected ServiceItem item;
protected LookupDiscovery disco;

// Inner class to listen for discovery events

class Listener implements DiscoveryListener
{

// Called when we find a new lookup service.

public void discovered(DiscoveryEvent ev)
{

System.out.println("discovered a lookup service!");
ServiceRegistrar[] newregs = ev.getRegistrars();
for (int i=0 ; i<newregs.length ; i++) {

if (!registrations.containsKey(newregs[i])) {
registerWithLookup(newregs[i]);

}
}

}

Jini Example: Hello World Publisher

// Called ONLY when we explicitly discard a lookup service, not
// "automatically" when a lookup service goes down

public void discarded(DiscoveryEvent ev)
{

ServiceRegistrar[] deadregs = ev.getRegistrars();
for (int i=0 ; i<deadregs.length ; i++) {

registrations.remove(deadregs[i]);
}

}
}

Jini Example: Hello World Publisher

public HelloWorldService() throws IOException {
item = new ServiceItem(null, createProxy(), null);

// Set a security manager

if (System.getSecurityManager() == null) {
System.setSecurityManager (new RMISecurityManager());

}

// Search for the "public" group.

disco = new LookupDiscovery(new String[] { "" });

// Install a listener.

disco.addDiscoveryListener(new Listener());
}

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 9

protected HelloWorldServiceInterface createProxy() {
return new HelloWorldServiceProxy();

}

Jini Example: Hello World Publisher

protected synchronized void
registerWithLookup(ServiceRegistrar registrar) {

ServiceRegistration registration = null;

try {
registration = registrar.register(item, LEASE_TIME);

} catch (RemoteException ex) {
System.out.println("Couldn’t register: " + ex.getMessage());
return;

}

if (item.serviceID == null) {
item.serviceID = registration.getServiceID();
System.out.println("Set serviceID to " + item.serviceID);

}

registrations.put(registrar, registration);
}

Jini Example: Hello World Publisher

// This thread does nothing but sleep, but it makes sure the VM
// doesn’t exit.

public void run() {
while (true) {

try {
Thread.sleep(1000000);
} catch (InterruptedException ex) {

}
}

}

// Create a new HelloWorldService and start its thread.

public static void main(String args[]) {
try {

HelloWorldService hws = new HelloWorldService();
new Thread(hws).start();

} catch (IOException ex) {
System.out.println("Couldn’t create service: " +

ex.getMessage());
}

}
}

Jini Example: Hello World Client

// A simple Client to exercise the HelloWorldService

import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.LookupDiscovery;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import java.util.Vector;
import java.io.IOException;
import java.rmi.RemoteException;

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 10

import java.rmi.RMISecurityManager;

public class HelloWorldClient implements Runnable {
protected ServiceTemplate template;
protected LookupDiscovery disco;

// An inner class to implement DiscoveryListener

class Listener implements DiscoveryListener {
public void discovered(DiscoveryEvent ev) {

ServiceRegistrar[] newregs = ev.getRegistrars();
for (int i=0 ; i<newregs.length ; i++) {

lookForService(newregs[i]);
}

}
public void discarded(DiscoveryEvent ev) {}

}

Jini Example: Hello World Client
public HelloWorldClient() throws IOException {

Class[] types = { HelloWorldServiceInterface.class };

template = new ServiceTemplate(null, types, null);

// Set a security manager

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());

}

// Only search the public group

disco = new LookupDiscovery(new String[] { "" });

// Install a listener

disco.addDiscoveryListener(new Listener());
}

Jini Example: Hello World Client
// Once we’ve found a new lookup service, search for proxies that
// implement HelloWorldServiceInterface

protected Object lookForService(ServiceRegistrar lusvc) {
Object o = null;

try {
o = lusvc.lookup(template);

} catch (RemoteException ex) {
System.err.println("Error doing lookup: " + ex.getMessage());
return null;

}

if (o == null) {
System.err.println("No matching service.");
return null;

}

System.out.println("Got a matching service.");
System.out.println("It’s message is: " +

((HelloWorldServiceInterface) o).getMessage());
return o;

}

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

CA464: DISTRIBUTED PROGRAMMING 11

Jini Example: Hello World Client

// This thread does nothing--it simply keeps the VM from exiting while
// we do discovery.

public void run() {
while (true) {

try {
Thread.sleep(1000000);

} catch (InterruptedException ex) {
}

}
}

// Create a HelloWorldClient and start its thread

public static void main(String args[]) {
try {

HelloWorldClient hwc = new HelloWorldClient();
new Thread(hwc).start();

} catch (IOException ex) {
System.out.println("Couldn’t create client: " +

ex.getMessage());
}

}
}

Geoff Hamilton/Martin Crane (from originals by Tanenbaum & Van Steen)

	Coordination-Based Systems
	Coordination Models
	Architectures
	Communication
	Jini

