Internet Transport Protocols

» Two Transport Protocols Available

— Transmission Control Protocol (TCP)
* connection oriented

* most applications use TCP

— User Datagram Protocol (UDP)

* connectionless

1/26/04

Transport layer addressing
« Communications endpoint addressed by:

— IP address (32 bit) in IP Header
— Port number (16 bit) in TP Header'
— Transport protocol (TCP or UDP) in IP Header

' Tp= Transport Protocol (UDP or TCP)

1/26/04

Some standard services and port numbers

service tcp udp
echo 7.7
PORT NUMBERS daytime 13 13
(last updat.ed 2004-01.-16) netstat 15
http://www.iana.org/assignments/port-numbers ftp-data 20
ftp 21
telnet 23
= smtp 25
time 37 37
domain 53 53
finger 79
http 80
pop-2 109
pop 110
sunrpc 111 111
uucp-path 117
1/26/04 e 1o ¢
talk 517

UDP: User Datagram Protocol [RFC 768]

* “no frills,” “bare bones”
Internet transport protocol Why 1s there a UDP?
* “best effort” service, UDP

* no connection
segments may be:

establishment (which can

— lost add delay)
— delivered out of order to the . .
L + simple: no connection
application

_ state at sender, receiver
° COI’ZI’I@CUOI/ZZQSS.'

» small segment header

— no handshaking between)
UDP sender, receiver * no congestion control:
— each UDP segment handled UDP can l?laSt away as
independently of others fast as desired

1/26/04 5

dellpc
Note

 Ports 0-1023 - well-known ports

 Ports 1024-49151 - Registered port: vendors use for applications

 Ports >49151 - dynamic / private ports

UDP Port Management

* Source (client)

— Obtains a free port number

— Specifies port of destination (server)
 Destination

— Receives datagram

— Sends datagram to destination IP:port

— Can send replies to source IP:port

1/26/04 6
UDP: more
often used for streaming
multimedia apps «— 32bits — »

— loss tOIer.aTlt Length, in |Source port #| destport #

— rate sensitive bytes of UDP T~ length checksum
other UDP uses (why?): segment,

including

— DNS header

— SNMP
reliable transfer over Application
UDP: add reliability at data
application layer (message)

— application-specific

error recover!
UDP segment format

1/26/04 7

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender: Receiver:

* treat segment contents as « compute checksum of
sequence of 16-bit received segment
Integers * check if computed

* checksum: addition (1’s checksum equals checksum
complement sum) of field value:

segment contents — NO - error detected

— YES - no error detected.
But may be errors
nonetheless? More later

 sender puts checksum
value into UDP
checksum field

1/26/04 8

Transmission Control Protocol (TCP)

« Connection-oriented service
 Point-to-point

* Full-duplex communication

 Stream interface (no message boundary!)

 Stream divided into segments for
transmission

* Each segment encapsulated in IP datagram
 Uses protocol ports to identify applications

1/26/04 9

TCP Port Management

* When a connection is established

— Source (client)

* Obtains a free port number

* Specifies IP:port of destination (server)
— Destination

» Receives connection request

 Sends data to destination IP:port

» The 4-tuple (source IP:port, destination
IP:port) identifies where data goes

1/26/04 10
32 Bits
PR N WY T S S SN S AN T S T S TN T I N
Source port Destination port
Sequence number
Acknowledgement number
TCP UlA|P|R|S|F
header R|C|S|S|Y]| I Window size
length G|K|H|T|N|N
Checksum Urgent pointer
= Options (0 or more 32-bit words) ez
:r Data (optional} :r

* Sequence number specifies where in stream data belongs
» Few segments contain options

TF 6-24
1/26/04

11

TCP Segment Format

Segment divided into two parts
— Header
— Payload area (zero or more bytes of data)

Header contains

— Protocol port numbers to identify
* Sending application
» Receiving application

— Bits to specify items such as
« SYN
* FIN
« ACK

— Fields for window advertisement, acknowledgment, etc.

1/26/04 12

Reliability in an Unreliable World

IP offers best-effort (unreliable) delivery
TCP uses IP

TCP provides completely reliable transfer

How is this possible? How can TCP realize:
— Reliable connection startup?

— Reliable data transmission?

— Graceful connection shutdown?

1/26/04 13

Reliable Data Transmission

» Positive acknowledgment
— Receiver returns short message when data arrives

— Called acknowledgment

* Retransmission
— Sender starts timer whenever message is transmitted

— If timer expires before acknowledgment arrives, sender retransmits
message

1/26/04 14

TCP seq. #’s and ACKs

Seq. #’s:
— byte stream “number’
of first byte in
segment’s data

ACKs:

2

— seq # of next byte o receipt of
‘ 'C', echoes

"

expected from other
side
— cumulative ACK

Q: how receiver handles out- ~ host ACKs
of-order segments receipt

of echoed Seq=43, ACKs=g
— A: TCP spec doesn’t ' 0
say, - up to

implementer

back 'C

simple telnet scenario

1/26/04 15

time

Timing Problem!

The delay required for data to reach a destination and an
acknowledgment to return depends on traffic in the internet as
well as the distance to the destination. Because it allows
multiple application programs to communicate with multiple
destinations concurrently, TCP must handle a variety of delays
that can change rapidly.

How does TCP handle this

1/26/04 16

Solving Timing Problem

Keep estimate of round trip time on each
connection

Use current estimate to set retransmission timer

« Known as adaptive retransmission

Key to TCP’s success

1/26/04 17

TCP Flow Control

» Receiver
— Advertises available buffer space
— Called window

Sender
— Can send up to entire window before ACK arrives

Each acknowledgment carries new window information
— Called window advertisement
— Can be zero (called closed window)

Interpretation: I have received up through X, and can take
Y more octets

1/26/04 18

TCP Flow Control

~flow control — receiver: explicitly
sender won't overrun informs sender of
receiver’'s buffers by (dynamically
transmitting too much, changing) amount of
too fast free buffer space

— RcvWindow field
in TCP segment

sender: keeps the amount
f— RevWindow — of transmitted,
unACKed data less

applicafion than most recently
process . .
received ReviWindow

RevBuffer = size or TCP Receive Buffer

RcvWWindow = amount of spare room in Buffer

data from

//7 o 7¢
777
b RevBuffr ———#

receiver buffering

1/26/04 19

Why Startup/ Shutdown Difficult?

» Segments can be
— Lost
— Duplicated
— Delayed
— Delivered out of order
— Either side can crash
— Either side can reboot

» Need to avoid duplicate ‘‘shutdown’’ message from
affecting later connection

1/26/04

20

TCP’s Startup/ Shutdown Solution

» Uses three-message exchange known as 3-
way handshake

* Necessary and sufficient for
— Unambiguous, reliable startup
— Unambiguous, graceful shutdown

» SYN used for startup, FIN used for
shutdown

1/26/04

21

TCP Connection Management (OPEN)

client
opening
SYN
opening
et
ACk
established
closed

1/26/04 22

TCP Connection Management (CLOSE)

client
closin
9 i
cK .
£ closing
PN
+—
'S ACk
=
3 closed
£
=

closed

1/26/04 23

TCP Connection Management (cont)

client application
initiates a TCP connection

wiait 30 seconds

send SYh

SYN_SENT

TIME_WAIT

receive FIN receive SYN & ACK
send ACK send ACK

TCP server
lifecycle

FIN_WAIT_2 ESTABLISHED

client application
initiates close connection

receive ACK
PRI EIH AT SR CLOSED server application
receive ACK creates a listen socket
TCP C“en'r send nothing
lifecycle
LAST_ACK LISTEN
'y
receive SYM
send FIN send SYN & ACK
¥
CLOSE_WAIT SYN_RCVD
receive ACK
FIN send nothing
receive
comd e ESTABLISHED
1/26/04 24

Transport Protocol Summary

» Transport protocols fit between applications and Internet
Protocol
» Two transport protocols in TCP/IP suite
— User Datagram Protocol (UDP)
— Transmission Control Protocol (TCP)
« UDP
— Unreliable
— Message-oriented interface
« TCP
— Major transport protocol used in Internet
— Complete reliability
— Stream-oriented interface
— Uses adaptive retransmission

1/26/04 25

