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Chapter 9 Chapter 9 –– Public Key Public Key 

Cryptography and RSACryptography and RSA

Every Egyptian received two names, which were Every Egyptian received two names, which were 

known respectively as the true name and the known respectively as the true name and the 

good name, or the great name and the little good name, or the great name and the little 

name; and while the good or little name was name; and while the good or little name was 

made public, the true or great name appears to made public, the true or great name appears to 

have been carefully concealed.have been carefully concealed.

——The Golden Bough, The Golden Bough, Sir James George FrazerSir James George Frazer

OutlineOutline

•• will consider:will consider:

–– principles of publicprinciples of public--key cryptographykey cryptography

–– RSA algorithm, implementation, securityRSA algorithm, implementation, security

PrivatePrivate--Key CryptographyKey Cryptography

•• traditional traditional private/secret/single keyprivate/secret/single key
cryptography uses cryptography uses oneone key key 

•• shared by both sender and receiver shared by both sender and receiver 

•• if this key is disclosed communications are if this key is disclosed communications are 
compromised compromised 

•• also is also is symmetricsymmetric, parties are equal , parties are equal 

•• hence does not protect sender from hence does not protect sender from 
receiver forging a message and claiming receiver forging a message and claiming 
itit’’s sent by sender (repudiation problem)s sent by sender (repudiation problem)



PublicPublic--Key CryptographyKey Cryptography

•• probably most significant advance in the probably most significant advance in the 

3000 year history of cryptography 3000 year history of cryptography 

•• uses uses twotwo keys keys –– a public & a private keya public & a private key

•• asymmetricasymmetric since parties are since parties are notnot equal equal 

•• uses clever application of number uses clever application of number 

theoretic concepts to functiontheoretic concepts to function

•• complements complements rather thanrather than replaces private replaces private 

key cryptography (efficiency reasons)key cryptography (efficiency reasons)

Why PublicWhy Public--Key Cryptography?Key Cryptography?

•• developed to address two key issues:developed to address two key issues:

–– key distributionkey distribution –– how to have secure how to have secure 
communications in general without having to communications in general without having to 
trust a KDC with your keytrust a KDC with your key

–– digital signaturesdigital signatures –– how to verify a message how to verify a message 
comes intact from the claimed sendercomes intact from the claimed sender

•• public invention due to Whitfield public invention due to Whitfield DiffieDiffie & & 
Martin Hellman at Stanford Martin Hellman at Stanford UniUni in 1976in 1976

–– known earlier in classified community (NSA known earlier in classified community (NSA 
(60(60’’s (claimed)), CESG (1970 (documented)))s (claimed)), CESG (1970 (documented)))

PublicPublic--Key CryptographyKey Cryptography

•• publicpublic--key/twokey/two--key/asymmetrickey/asymmetric cryptography cryptography 
involves the use of involves the use of twotwo keys: keys: 
–– a a publicpublic--keykey, which may be known by anybody, and can , which may be known by anybody, and can 

be used to be used to encrypt messagesencrypt messages, and , and verify signaturesverify signatures

–– a related a related privateprivate--keykey, known only to the recipient, used , known only to the recipient, used 
to to decrypt messagesdecrypt messages, and , and signsign (create)(create) signaturessignatures

•• infeasible to determine private key from public infeasible to determine private key from public 
(requires solving a hard problem)(requires solving a hard problem)

•• is is asymmetricasymmetric becausebecause
–– those who those who encryptencrypt messages or messages or verifyverify signatures signatures 

cannotcannot decryptdecrypt messages or messages or createcreate signaturessignatures

PublicPublic--Key CryptographyKey Cryptography



PublicPublic--Key CryptographyKey Cryptography Symmetric Symmetric vsvs PublicPublic--KeyKey

PublicPublic--Key CryptosystemsKey Cryptosystems

Combining secrecy and authentication

PublicPublic--Key ApplicationsKey Applications

•• can classify uses into 3 categories:can classify uses into 3 categories:

–– encryption/decryptionencryption/decryption (provide secrecy)(provide secrecy)

–– digital signaturesdigital signatures (provide authentication)(provide authentication)

–– key exchangekey exchange (of session keys)(of session keys)

•• some algorithms are suitable for all uses, some algorithms are suitable for all uses, 

others are specific to oneothers are specific to one



PublicPublic--Key RequirementsKey Requirements

•• PublicPublic--Key algorithms rely on two keys where:Key algorithms rely on two keys where:

–– it is computationally infeasible to find decryption key it is computationally infeasible to find decryption key 

knowing only algorithm & encryption keyknowing only algorithm & encryption key

–– it is computationally easy to en/decrypt messages it is computationally easy to en/decrypt messages 

when the relevant (en/decrypt) key is knownwhen the relevant (en/decrypt) key is known

–– either of the two related keys can be used for either of the two related keys can be used for 

encryption, with the other used for decryption (for encryption, with the other used for decryption (for 

some algorithms)some algorithms)

•• these these are formidable requirements which are formidable requirements which 

only a few algorithms have satisfiedonly a few algorithms have satisfied

PublicPublic--Key RequirementsKey Requirements

•• need a trapdoor oneneed a trapdoor one--way functionway function

•• oneone--way function hasway function has
–– Y = Y = f(Xf(X) easy  ) easy  

–– X = fX = f––11(Y) infeasible(Y) infeasible

•• a trapa trap--door onedoor one--way function hasway function has
–– Y = Y = ffkk(X(X) easy, if k and X are known) easy, if k and X are known

–– X = X = ffkk
––11(Y) easy, if k and Y are known(Y) easy, if k and Y are known

–– X = X = ffkk
––11(Y) infeasible, if Y known but k not known(Y) infeasible, if Y known but k not known

•• a practical publica practical public--key scheme depends on key scheme depends on 

a suitable trapa suitable trap--door onedoor one--way functionway function

Security of Public Key SchemesSecurity of Public Key Schemes

•• like private key schemes brute force like private key schemes brute force exhaustive exhaustive 
searchsearch attack is always theoretically possible attack is always theoretically possible 

•• but keys used are too large but keys used are too large …… >512bits >512bits 
(PK schemes are (PK schemes are generic generic andand supersuper--
polynomialpolynomial …… can always choose a bigger can always choose a bigger 
instance, unlike block ciphers)instance, unlike block ciphers)

•• security relies on a security relies on a large enoughlarge enough difference in difference in 
difficulty between difficulty between easyeasy (en/decrypt) and (en/decrypt) and hardhard
((cryptanalysecryptanalyse) problems) problems

•• more generally the more generally the hardhard problem is problem is ‘‘knownknown’’, but , but 
is made hard enough to be impractical to break is made hard enough to be impractical to break 

•• requires the use of requires the use of very large numbersvery large numbers

•• hence is hence is slowslow compared to private key schemescompared to private key schemes

RSARSA

•• by by RivestRivest, Shamir & , Shamir & AdlemanAdleman of MIT in 1977 of MIT in 1977 

•• best known & widely used publicbest known & widely used public--key scheme key scheme 

•• based on exponentiation in a finite (Galois) field based on exponentiation in a finite (Galois) field 

over integers modulo a prime over integers modulo a prime 

–– nbnb. exponentiation takes . exponentiation takes O((logO((log n)n)33) operations (easy) ) operations (easy) 

•• uses large integers (uses large integers (egeg. 1024 bits). 1024 bits)

•• security due to cost of factoring large numbers security due to cost of factoring large numbers 

–– nbnb. factorization takes . factorization takes O(eO(e log n log log n log loglog nn) operations ) operations 

((superpolynomialsuperpolynomial, hard) , hard) 



RSA En/decryptionRSA En/decryption

•• to encrypt a message to encrypt a message MM the sender:the sender:

–– obtains obtains public keypublic key of recipient of recipient PUPU == {{e,ne,n}}

–– computes: computes: CC == MMee modmod nn, where , where 00 ≤≤ MM << nn

•• to decrypt the to decrypt the ciphertextciphertext C the owner:C the owner:

–– uses their private key uses their private key PRPR == {{d,nd,n}}

–– computes: computes: MM == CCdd modmod nn

•• note that the message note that the message MM must be smaller must be smaller 

than the modulus than the modulus nn (block if needed)(block if needed)

RSA Key SetupRSA Key Setup

•• each user generates a public/private key pair by: each user generates a public/private key pair by: 

•• selecting two large primes at random: selecting two large primes at random: p,qp,q

•• computing their system modulus computing their system modulus nn == p.qp.q

–– note note øø(n(n)) == (p(p--1)(q1)(q--1)1)

•• selecting at random the encryption key selecting at random the encryption key ee

–– where where 11 << ee << øø(n(n), ), gcd(e,gcd(e,øø(n(n)))) == 1 1 

•• solve following equation to find decryption key solve following equation to find decryption key dd

–– e.de.d == 1 mod 1 mod øø(n(n) and 0) and 0 ≤≤ dd ≤≤ nn

•• publish their public encryption key: publish their public encryption key: PUPU == {{e,ne,n}}

•• keep secret private decryption key: keep secret private decryption key: PRPR == {{d,nd,n}}

Why RSA WorksWhy RSA Works

•• because of Euler's Theorem:because of Euler's Theorem:
–– aaøø(n(n)) modmod nn == 11 where where GCD(a,nGCD(a,n)) == 11

•• in RSA have:in RSA have:
–– nn == p.qp.q

–– øø(n(n)) == (p(p--1)(q1)(q--1)1)

–– carefully chose carefully chose ee and and dd to be inverses  to be inverses  modmod øø(n(n))

–– hence hence e.de.d == 11 ++ k.k.øø(n(n)) for some for some kk

•• hence :hence :
CCdd == MMe.de.d == MM1+k.1+k.øø(n)(n) == MM11.(M.(Møø(n)(n)))kk

== MM11.(1).(1)kk == MM11 == MM modmod nn

(provided (provided MM and and nn coprimecoprime (still OK if not))(still OK if not))



RSA Example RSA Example -- Key SetupKey Setup

1.1. Select primes: Select primes: pp == 1717 ;; qq == 1111

2.2. Calculate Calculate nn == pqpq == 1717 xx 1111 == 187187

3.3. Calculate Calculate øø(n(n)) == (p(p––1)(q1)(q--1)1) == 1616xx1010 == 160160

4.4. Select  Select  ee:: GCD(e,160)GCD(e,160) == 11 ;; choose choose ee == 77

5.5. Derive Derive dd:: dede == 11 modmod 160160 and and dd << 160160

Get      Get      dd == 2323 since since 2323xx77 == 161161 == 1010xx160+1160+1

6.6. Publish public key: Publish public key: PUPU == {7,187}{7,187}

7.7. Keep private key secret: Keep private key secret: PRPR == {23,{23,187}187}

RSA Example RSA Example -- En/DecryptionEn/Decryption

•• sample RSA encryption/decryption is: sample RSA encryption/decryption is: 

•• given message  given message  MM == 8888 ((nbnb. . 8888 << 187187))

•• encryption:encryption:

CC == 888877 modmod 187187 == 1111

•• decryption:decryption:

MM == 11112323 modmod 187187 == 8888

ExponentiationExponentiation

•• can use the Square and Multiply Algorithmcan use the Square and Multiply Algorithm

•• a fast, efficient algorithm for exponentiation a fast, efficient algorithm for exponentiation 

•• concept is based on repeatedly squaring base concept is based on repeatedly squaring base 

•• and multiplying in the ones that are needed to and multiplying in the ones that are needed to 

compute the result compute the result 

•• look at binary representation of exponent look at binary representation of exponent 

•• only takes O(logonly takes O(log22 n) multiples for number n n) multiples for number n 

–– eg. eg. 7755 == 7744.7.711 == 3.73.7 == 1010 modmod 1111

–– eg. eg. 33129129 == 33128128.3.311 == 5.35.3 == 44 modmod 1111

ExponentiationExponentiation

Computing Computing aabb mod mod nn

f = 1f = 1

for i = k for i = k downtodownto 0 0 

do f = (f x f) mod ndo f = (f x f) mod n

if bif bii == 1== 1 then then 

f = (f x a) mod n f = (f x a) mod n 

return freturn f

Here, integer Here, integer bb is the is the bitstringbitstring bbkkbbkk--11……bb00



Efficient EncryptionEfficient Encryption

•• encryption uses exponentiation to power encryption uses exponentiation to power ee

•• hence if hence if ee small, this will be fastersmall, this will be faster

–– often choose often choose ee == 6553765537 (2(21616 -- 1)1)

–– also see choices of also see choices of ee == 33 or or ee == 1717

•• but if but if ee too small (too small (egeg. . ee == 33) can attack) can attack

–– using Chinese remainder theorem and 3 using Chinese remainder theorem and 3 
messages with different messages with different modulimoduli

•• if if ee fixed must ensure fixed must ensure GCD(e,GCD(e,øø(n(n)))) == 11

–– ieie reject any reject any pp or or qq where where pp--11 or or qq--11 are not are not 
relatively prime to relatively prime to ee

Efficient DecryptionEfficient Decryption

•• decryption uses exponentiation to power decryption uses exponentiation to power dd

–– this is likely large, insecure if notthis is likely large, insecure if not

•• can use the Chinese Remainder Theorem can use the Chinese Remainder Theorem 
(CRT) to compute (CRT) to compute modmod pp and and modmod qq

separately; then combine to get answerseparately; then combine to get answer

–– approx 4 times faster than doing directlyapprox 4 times faster than doing directly

•• only owner of private key who knows only owner of private key who knows 
values of values of pp and and qq can use this technique can use this technique 

RSA Key GenerationRSA Key Generation

•• users of RSA must:users of RSA must:
–– determine two primes determine two primes at random   at random   p,qp,q

–– select either select either ee or or dd and compute the otherand compute the other

•• primes primes p,qp,q must not be easily derived must not be easily derived 
from modulus from modulus nn == p.qp.q

–– means must be sufficiently largemeans must be sufficiently large

–– typically guess and use probabilistic testtypically guess and use probabilistic test

•• exponents exponents e,de,d are inverses, so use are inverses, so use 
Inverse algorithm to compute the otherInverse algorithm to compute the other

RSA SecurityRSA Security

•• possible approaches to attacking RSA are:possible approaches to attacking RSA are:

–– brute force key search brute force key search -- infeasible given size infeasible given size 

of numbersof numbers

–– mathematical attacks mathematical attacks -- based on difficulty of based on difficulty of 
computing computing øø((nn), by factoring modulus ), by factoring modulus nn

–– timing attacks timing attacks -- on running of decryptionon running of decryption

–– chosen chosen ciphertextciphertext attacks attacks -- given properties of given properties of 

RSARSA



Factoring ProblemFactoring Problem

•• mathematical approach takes 3 forms:mathematical approach takes 3 forms:
–– factor factor nn == p.qp.q, hence compute , hence compute øø(n(n)) and then and then dd

–– determine determine øø(n(n)) directly and directly and compute compute dd

–– find find dd directlydirectly

•• currently believe all equivalent to factoringcurrently believe all equivalent to factoring
–– have seen slow improvements over the years have seen slow improvements over the years 

•• as of Mayas of May--05 best is 200 decimal digits (663) bit with LS 05 best is 200 decimal digits (663) bit with LS 

–– biggest improvement comes from improved algorithmbiggest improvement comes from improved algorithm
•• cfcf QS to GNFS to LSQS to GNFS to LS

–– currently assume 1024currently assume 1024--2048 bit RSA is secure2048 bit RSA is secure
•• ensure p, q of similar size and matching other constraintsensure p, q of similar size and matching other constraints

Progress in Progress in FactoringFactoring

Progress Progress 

in in 

FactoringFactoring

Timing AttacksTiming Attacks

•• developed by Paul Kocher in middeveloped by Paul Kocher in mid--19901990’’ss

•• exploit timing variations in operationsexploit timing variations in operations
–– eg. multiplying by small eg. multiplying by small vsvs large number large number 

–– or or IF'sIF's varying which instructions executedvarying which instructions executed

•• infer operand size based on time taken infer operand size based on time taken 

•• RSA exploits time taken in exponentiationRSA exploits time taken in exponentiation

•• countermeasurescountermeasures
–– use constant exponentiation timeuse constant exponentiation time

–– add random delaysadd random delays

–– blind values used in calculationsblind values used in calculations



Chosen Chosen CiphertextCiphertext AttacksAttacks

•• RSA is vulnerable to a Chosen RSA is vulnerable to a Chosen CiphertextCiphertext
Attack (CCA)Attack (CCA)

•• attacker chooses attacker chooses ciphertextsciphertexts and gets and gets 
decrypted plaintext backdecrypted plaintext back

•• choose choose ciphertextciphertext to exploit properties of to exploit properties of 
RSA to provide info to help cryptanalysisRSA to provide info to help cryptanalysis

•• can counter with random pad of plaintextcan counter with random pad of plaintext
•• or use Optimal Asymmetric Encryption or use Optimal Asymmetric Encryption 

Padding (OASP)Padding (OASP)

Optimal Optimal 

Asymmetric Asymmetric 

Encryption Encryption 

Padding Padding 

(OASP)(OASP)


