Cryptography and
Network Security
Chapter 9

Fifth Edition
by William Stallings
Lecture slides by Lawrie Brown
(with edits by RHB)

Qutline

 will consider:
— principles of public-key cryptography
— RSA algorithm, implementation, security

Chapter 9 — Public Key
Cryptography and RSA

Every Egyptian received two names, which were

known respectively as the true name and the
good name, or the great name and the little
name; and while the good or little name was
made public, the true or great name appears to
have been carefully concealed.

—The Golden Bough, Sir James George Frazer

Private-Key Cryptography

traditional private/secret/single key
cryptography uses one key

shared by both sender and receiver

if this key is disclosed communications are
compromised
also is symmetric, parties are equal

hence does not protect sender from
receiver forging a message and claiming
it's sent by sender (repudiation problem)

Public-Key Cryptography Why Public-Key Cryptography?

pl’Obany mOSt significant advance in the . deve|oped to address two key issues:

3000 year history of cryptography — key distribution — how to have secure

uses two keys — a public & a private key communications in general without having to

.. : | trust a KDC with your key

asymmetric since parties are not equa — digital signatures — how to verify a message

uses clever application of number comes intact from the claimed sender

theoretic concepts to function * public invention due to Whitfield Diffie &

complements rather than replaces private Mirt'” Hellrlnan atIStafnfgrd Uni in 1%;

Al —known earlier in classified community

key cryptography (efficiency reasons) (60s (claimed)), CESG (1970 (documented)))

Public-Key Cryptography Public-Key Cryptography

public-key/two-key/asymmetric cryptography

involves the use of two keys:

— a public-key, which may be known by anybody, and can
be used to encrypt messages, and verify signatures

— a related private-key, known only to the recipient, used
to decrypt messages, and sign (create) signatures

infeasible to determine private key from public Teanemited x-

(requires solving a hard problem) ciphertext B

is asymmetric because — V= EIPU,)

- Plaintext rpti rithm ecryption algorithm Plaintext
— those who encrypt messages or verify signatures mput ERCEPtoL ot Decrption algorid output

cannot decrypt messages or create signatures

T

PR, Allice 's private
key

|

Bob (a) Encryption with public key Alice

Public-Key Cryptography

Symmetric vs Public-Key

Conventional Encryption Public-Key Encryption
Needed to Work: Needed to Work:
Alice's
public key 1. The same algorithm with the same key is 1. Omne algorithm is used for encryption and
used for encryption and decryption. decryption with a pair of keys, one for
encryption and one for decryption.
Joy Ted 2. The sender and receiver must share the
Mike algorithm and the key. 2. The sender and receiver must each have
one of the matched pair of keys (not the
PR;, | Bob's private PU, | Bob's public Needed for Sectrtty: EELEGE
key key =
1. The key must be kept secret. Needed for Security:
Transmitted .Y 2. It must be impossible or at least 1. One of the two keys must be kept secret.
’ N impractical to decipher & message if no
L ” other information is available. 2. It must be impossible or at least
Y =E[PR;, X] impractical to decipher a message if no
Plai , 3. Knowledge of the algorithm plus other information is available.
aintext R R B . Plaintext 5
input Encryption algorithm Decryption algorithm output f,ample;s_ ofcnphenexl_must be .

(e.g, RSA) insufficient to determine the key. 3. Knowledge of the algorithm plus one of

the keys plus samples of ciphertext must

Bob (b) Encryption with private key Alice x insufficient to determine the other
Y.

Public-Key Cryptosystems

Source A

f_—————)\————_ﬂ

Public-Key Applications

Destination 8 « can classify uses into 3 categories:

—_——

L\

Decryption

Y

— encryption/decryption (provide secrecy)

essage X Encryption || Y Encryption
Source Algorithm Algorithm

A

Algorithm

g e — digital signatures (provide authentication)

A

Key Pair
Source

PRy

| — key exchange (of session keys)
« some algorithms are suitable for all uses,

others are specific to one

K;DYU':E: Algorithm Encryption/Decryption [Digital Signature Key Exchange
RSA Yes Yes Yes
Elliptic Curve | Yes Yes Yes
Combining secrecy and authentication Diffic-Hellman No No Yes
Dss No Yes No

Public-Key Requirements

Public-Key algorithms rely on two keys where:

— it is computationally infeasible to find decryption key
knowing only algorithm & encryption key

— it is computationally easy to en/decrypt messages
when the relevant (en/decrypt) key is known

— either of the two related keys can be used for
encryption, with the other used for decryption (for
some algorithms)

these are formidable requirements which
only a few algorithms have satisfied

Security of Public Key Schemes

like private key schemes brute force exhaustive
search attack is always theoretically possible

but keys used are too large ... >512bits
(PK schemes are generic and super-
polynomial ... can always choose a bigger
Instance, unlike block ciphers)

security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

more generally the hard problem is ‘known’, but
is made hard enough to be impractical to break

requires the use of very large numbers
hence is slow compared to private key schemes

Public-Key Requirements

need a trapdoor one-way function
one-way function has

- Y ={(X) easy

— X =f1(Y) infeasible

a trap-door one-way function has

- Y =f,(X) easy, if k and X are known

- X =f(Y) easy, if kand Y are known

- X =f(Y) infeasible, if Y known but k not known

a practical public-key scheme depends on
a suitable trap-door one-way function

RSA

by Rivest, Shamir & Adleman of MIT in 1977
best known & widely used public-key scheme
based on exponentiation in a finite (Galois) field
over integers modulo a prime

— nb. exponentiation takes O((log n)3) operations (easy)
uses large integers (eg. 1024 bits)

security due to cost of factoring large numbers

— nb. factorization takes O(e 'e9 nloglogn) gperations
(superpolynomial, hard)

RSA En/decryption

« to encrypt a message M the sender:
— obtains public key of recipient PU = {e, n}
—computes: C = M® mod n, where 0 <M < n

« to decrypt the ciphertext C the owner:
— uses their private key PR = {d, n}
—computes: M = C9mod n

 note that the message M must be smaller
than the modulus n (block if needed)

Key Generation
Selectp. g p and g both prime. p = g
Calculaten=p x g
Calculate ¢(n) = (p— 1)(g - 1)
Select integer e ged((n). e)=1: 1 <e<g¢(n)
Caleulate d d=el (mod (n)
Public key PU={e.n}

Private key PR={d.n}

Plaintext: M<

Ciphy C=M 1
Decrypt

Ciphert C

Plaintext: M=Cdmodn

Figure 9.5 The RSA Algorithm

RSA Key Setup

each user generates a public/private key pair by:
selecting two large primes at random: p, g
computing their system modulus n =p.qg
—note ¢ (n) = (p-1) (g-1)

selecting at random the encryption key e
—wherel<e<g(n), gcd(e,o(n)) =1
solve following equation to find decryption key d
—e.d=1 mod g(n) and 0<d<n

publish their public encryption key: PU = {e, n}
keep secret private decryption key: PR = {d, n}

Why RSA Works

because of Euler's Theorem:

- a?m™ modn=1where GCD(a,n) =1

in RSA have:

-n=p.q

-o(n) = (p-1) (g-1)

— carefully chose e and d to be inverses mod @ (n)
—hencee.d=1+k.z(n) forsome k

hence :
Cd — Me.d — Ml+k.®(n) — Ml. (Mg(n))k

=M. (1)k=M! =Mmod n
(provided M and n coprime (still OK if not))

I ol A

o

RSA Example - Key Setup RSA Example - En/Decryption

Select primes:p=17; g=11
Calculate n=pg=17x11 =187
Calculate @ (n) = (p-1) (g-1) =16x10 =160

sample RSA encryption/decryption is:
given message M= 88 (nb. 88 < 187)

Select e: GCD(e,160) =1 ; choose e = 7 encryp}lon-
Derive d: de = 1 mod 160 and d < 160 C=88"mod 187 =11
Get d=23since 23x7=161=10x160+1 « decryption:

Publish public key: PU = {7,187} M=1123mod 187 = 88
Keep private key secret: PR = {23,187}

Exponentiation Exponentiation
can use the Square and Multiply Algorithm Computing a® mod n
a fast, efficient algorithm for exponentiation fF =1
concept is based on repeatedly squaring base for i = k downto 0
and multiplying in the ones that are needed to do f = (f x f) mod n
compute the result if b. == 1 then
look at binary representation of exponent flz (f x a) mod n

only takes O(log, n) multiples for number n

—eQ.7°=7%.7"=3.7=10mod 11 . . o
—eg.312°= 312531 2 5.3 — 4mod 11 Here, integer b is the bitstring b, b, ;..

return f

Efficient Encryption

encryption uses exponentiation to power e
hence if e small, this will be faster

—often choose e = 65537 (216 - 1)

—also see choicesofe=30re =17

but if e too small (eg. e = 3) can attack

—using Chinese remainder theorem and 3
messages with different moduli

if e fixed must ensure GCD(e,o(n)) =1

—ie reject any p or g where p-1 or g-1 are not
relatively prime to e

RSA Key Generation

users of RSA must:

—determine two primes at random p, g

— select either e or d and compute the other
primes p, g must not be easily derived
from modulus n =p.qg

— means must be sufficiently large

— typically guess and use probabilistic test
exponents e, d are inverses, so use
Inverse algorithm to compute the other

Efficient Decryption

 decryption uses exponentiation to power d
—this is likely large, insecure if not

» can use the Chinese Remainder Theorem
(CRT) to compute mod p and mod g

separately; then combine to get answer
— approx 4 times faster than doing directly

 only owner of private key who knows
values of p and g can use this technique

RSA Security

 possible approaches to attacking RSA are:

— brute force key search - infeasible given size
of numbers

— mathematical attacks - based on difficulty of
computing @(n), by factoring modulus n

— timing attacks - on running of decryption

— chosen ciphertext attacks - given properties of
RSA

Factoring Problem Progress in Factoring

® mathematical approaCh takeS 3 formS: Number of Approximate Date Achieved MIPS-years Algorithm
Decimal Digits MNumber of Bits
— factor n = p.q, hence compute & (n) and then d e e ; =
— determine @ (n) directly and compute d = = Aps L . e
. . 120 398 June 1993 830 quadratic sieve
— find d dlreCtly 129 428 April 1994 5000 quadratic sieve |
« currently believe all equivalent to factoring - o Ao 9% R - rers
— have seen slow improvements over the years 140 a6 February 1999 2000 generalized
« as of May-05 best is 200 decimal digits (663) bit with LS _ _ _ _ | ™ |
— biggest improvement comes from improved algorithm b 2 SRS e nf;;”,“g:fd
: Cf QS to GNFS to LS 160 530 April 2003 -]_ath':::'eve
— currently assume 1024-2048 bit RSA is secure 174 576 December 2003 = Laticesieve |
 ensure p, q of similar size and matching other constraints 2L L Ly T = il

™

. Timing Attacks

10 e
o e developed by Paul Kocher in mid-1990’s
o raasee |] - exploit timing variations in operations

. e A — eg. multiplying by small vs large number
// //.\' — or IF's varying which instructions executed

// // infer operand size based on time taken

vt Secll Number RSA exploits time taken in exponentiation
N r countermeasures

1 — use constant exponentiation time

10 — add random delays

] — blind values used in calculations

a0 BO0 1000 1200 1400 1600 1B 2000
Bits

Progress
In
Factoring

MIPS-vears Needed to Factor
[]

1’

Chosen Ciphertext Attacks

RSA is vulnerable to a Chosen Ciphertext
Attack (CCA)

attacker chooses ciphertexts and gets
decrypted plaintext back

choose ciphertext to exploit properties of
RSA to provide info to help cryptanalysis
can counter with random pad of plaintext
or use Optimal Asymmetric Encryption
Padding (OASP)

Optimal
Asymmetric
Encryption
Padding
(OASP)

k.
maskedDB

maskedseed

EM

MGF = mask generating function

